## Lord Howe Island Renewable Energy Project

LORD HOWE ISLAND BOARD

### Wind Turbine Generator Noise Impact Assessment

Revision 4

23 April 2015







#### Lord Howe Island Renewable Energy Project

| Project no:      | RT19500                                                                     |
|------------------|-----------------------------------------------------------------------------|
| Document title:  | Wind Turbine Generator Noise Impact Assessment                              |
| Document no:     | Document No.                                                                |
| Revision:        | 4                                                                           |
| Date:            | 23 April 2015                                                               |
| Client name:     | Lord Howe Island Board                                                      |
| Project manager: | Dave Pollington                                                             |
| Author:          | John Hutchison                                                              |
| File name:       | C:\Users\JHutchison\Dropbox\Lord Howe Island\RT19500 LHI WTG NIA Rev 1.docx |

Jacobs Group (Australia) Pty Limited ABN 37 001 024 095 100 Christie Street St Leonards NSW 2065 Australia PO Box 164 St Leonards NSW 2065 Australia T +61 2 9928 2100 F +61 2 9928 2500 www.jacobs.com

COPYRIGHT: The concepts and information contained in this document are the property of Jacobs Group (Australia) Pty Limited. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

| Revision | Date       | Description                                                          | Ву            | Review        | Approved |
|----------|------------|----------------------------------------------------------------------|---------------|---------------|----------|
| 0        | 11/03/2015 | Draft report for review                                              | J Hutchison   | P Walsh       | 13/3/15  |
| 1        | 13/03/2015 | Client review                                                        | A Logan       |               |          |
| 2        | 19/03/2015 | Revised to include client comments                                   | J Hutchison   |               |          |
| 3        | 13/04/2015 | Corrected typo in section 5.2                                        | D. Pollington | D. Pollington | 13-4-15  |
| 4        | 23/04/2015 | Changed names of three of the logger locations as per client request | D. Pollington | D. Pollington | 23-4-15  |
|          |            |                                                                      |               |               |          |

#### Document history and status



#### Contents

| Defin | nition of terms                                  | iii |
|-------|--------------------------------------------------|-----|
| Exec  | cutive Summary                                   | v   |
| 1.    | Introduction                                     | 1   |
| 1.1   | Overview                                         | 1   |
| 1.2   | Scope of work                                    | 1   |
| 2.    | Proposed WTG location and operational parameters | 2   |
| 2.1   | Site description                                 | 2   |
| 2.2   | Operating specifications                         | 3   |
| 2.3   | Sound power levels                               | 4   |
| 3.    | Existing environment                             | 5   |
| 3.1   | Relevant receivers                               | 5   |
| 3.2   | Background noise and wind speed monitoring       | 7   |
| 3.2.1 | Methodology                                      | 7   |
| 3.2.2 | Operator-attended monitoring observations        | 8   |
| 3.2.3 | Data analysis                                    | 11  |
| 3.3   | Wind shear                                       | 11  |
| 4.    | Noise assessment criteria                        | 12  |
| 4.1   | WTG noise sources                                |     |
| 4.2   | Wind farm noise guidelines                       | 12  |
| 4.3   | Project-specific noise goals                     | 13  |
| 4.4   | Seasonal variation                               | 13  |
| 5.    | Noise prediction                                 | 16  |
| 5.1   | Noise model selection and development            | 16  |
| 5.2   | Predicted results                                | 17  |
| 6.    | Contingency strategy                             | 18  |

| Appendix A. Manufacturer sound power data                                     | 19       |
|-------------------------------------------------------------------------------|----------|
| Appendix B. Relevant receivers                                                | 20       |
| Appendix C. Relevant receivers map                                            | 23       |
| Appendix D. Background noise and wind data analysis                           | 28       |
| Appendix E. Wind shear                                                        | 32       |
| Appendix F. Noise predictions at all relevant receivers                       | 33       |
| Appendix D. Background noise and wind data analysis<br>Appendix E. Wind shear | 28<br>32 |



## **Definition of terms**

| Assessment<br>period                   | <ul> <li>The period in a day over which assessments are made. In this case:</li> <li>day (0700 to 2200 h),</li> <li>night (2200 to 0700 h).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Background<br>noise                    | The underlying level of noise present in the ambient noise, excluding the noise source under investigation, when extraneous noise is removed. This is described using the L <sub>A90</sub> descriptor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Decibel (dB)                           | A measure of sound equivalent to 20 times the logarithm (to base 10) of the ratio of a given sound pressure to a reference pressure, and 10 times the logarithm (to base 10) of the ratio of a given sound pow er to a reference pow er.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| dB(A)                                  | Unit used to measure 'A-w eighted' sound pressure levels. A-w eighting is an adjustment made to sound-level measurement to approximate the response of the human ear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Extraneous<br>noise                    | Noise resulting from activities that are not typical of the area such as construction, and traffic generated by holiday periods or special events such as concerts or sporting events. Normal daily traffic is not considered to be extraneous.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Feasible and<br>reasonable<br>measures | <ul> <li>Feasibility relates to engineering considerations and what is practical to build; reasonableness relates to the application of judgement in arriving at a decision, taking into account the following factors:</li> <li>noise mitigation benefits (noise reduction provided, people protected)</li> <li>cost of mitigation (cost of mitigation versus benefit provided)</li> <li>community views (aesthetic impacts and community wishes)</li> <li>noise levels for affected land uses (existing and future levels)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Hub height                             | The hub height is the distance from the turbine platform to the rotor of a wind turbine and indicates how high the turbine stands above the ground, not including the length of the turbine blades.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Intrusive noise                        | Refers to noise that intrudes above the background level by more than 5 dB(A).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Low frequency noise                    | A noise with perceptible and definite content in the audible frequency range below 250 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Noise level<br>statistics              | L <sub>A00</sub> - The A-w eighted sound pressure level exceeded 90% of the monitoring period. This is considered to represent the background noise.<br>L <sub>Aeq</sub> - The equivalent continuous A-w eighted noise level—the level of noise equivalent to the energy average of noise levels occurring over a measurement period.<br>L <sub>A1</sub> - The A-w eighted sound pressure level exceeded 1% of the monitoring period.<br>L <sub>Amax</sub> - The maximum A-w eighted noise level associated with the measurement period.<br>L <sub>Amax</sub> - The maximum A-w eighted noise level associated with the measurement period.<br>L <sub>Amax</sub> - The maximum A-w eighted noise level associated with the measurement period.<br>L <sub>Amax</sub> - The maximum A-w eighted noise level associated with the measurement period.<br>L <sub>Amax</sub> - The maximum A-w eighted noise level associated with the measurement period.<br>L <sub>Amax</sub> - The maximum A-w eighted noise level associated with the measurement period.<br>L <sub>Amax</sub> - The maximum A-w eighted noise level associated with the measurement period.<br>L <sub>Amax</sub> - The maximum A-w eighted noise level associated with the measurement period.<br>Time |



| Predicted<br>noise level | The $L_{A10}$ w ind farm noise level at a receiver predicted in accordance w ith AS4959                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Receiver                 | Premises that may be affected by the noise source, other than premises on the same land as the noise source                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Receiver catchment       | A defined area in w hich all receivers are considered to experience similar levels of background noise and for w hich a single receiver w ould be representative of all                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Sound Power<br>Level     | The A-w eighted sound pow er level is a logarithmic ratio of the acoustic pow er output of a source relative to 10 <sup>-12</sup> w atts and expressed in decibels. Sound pow er level is calculated from measured sound pressure levels and represents the level of total sound pow er radiated by a sound source.                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Sound<br>Pressure Level  | This is the level of noise, usually expressed in dB(A), as measured by a standard sound level meter with a pressure microphone. The sound pressure level in dB(A) gives a close indication of the subjective loudness of noise. A technical definition for the sound pressure level, in decibels, is 20 times the logarithm (base 10) of the ratio of any two quantities related to a given sound pressure to a reference pressure (typically 20 µPa equivalent to 0 dB). Examples of typical sound pressure levels are show n below. |  |  |  |  |  |  |
|                          | 20 Pa<br>20 Pa<br>120 dB - Louisi car homone metre away<br>120 dB - Airport                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|                          | 2 9a<br>90 dB - Inside underground train or alongside<br>mainline raibwry<br>90 dB - Bus interior                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|                          | 0.2 Pa 30 dB - Sucy residential road<br>70 dB - Conversational speech                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|                          | 6.02 Pa<br>S0 dB - Living room with relate or<br>television playing quietly                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|                          | 50 dB - Quiet office<br>40 dB - Sedrown<br>59 dB - Recording studio                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                          | 0.0002 Pa 20 dB - Broadcasting studio<br>10 dB - Threshold of bearing                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|                          | 0.00002.Ps 0.dB<br>Sound pressure level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|                          | Source: https://www.osha.gov/dts/osta/otm/noise/health_effects/soundpropagation.html                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Tonal noise              | Noise with perceptible and definite pitch or tone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| WTG                      | Wind Turbine Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |



### **Executive Summary**

A hybrid renewable energy system is proposed to be installed on Lord Howe Island to reduce its reliance on imported diesel for electricity generation. Jacobs was engaged by the Lord Howe Island Board (the Board) to measure background noise levels and complete an assessment of wind turbine generator (WTG) noise impacts on the Lord Howe Island community.

Two 275 kW WTGs are proposed to be installed in a cleared section near Transit Hill, at a relative height of approximately 60 - 70 m above sea level. Geographical coordinates of the WTGs are proposed to be:

- WTG1 Easting 507064 m, Northing 6511667 m
- WTG2 Easting 507157 m, Northing 6511661 m

The WTG site overlooks the Pinetrees Lodge to the east, which is at a relative height of around 5 m, and closest to residences to the north, at a relative height of around 35 m above sea level.

For the purpose of this assessment, the Island was divided into four receiver catchments, accommodating all relevant receivers. Background noise levels were measured at a single location within each receiver catchment concurrently with wind speed and direction over a period of approximately four weeks in January and February 2015. Data were used to establish the correlation between the L<sub>A90 10 minute</sub> background noise level and wind speed on the island during the entire 24-hour period as well as separate night and day periods.

Based on this correlation, which is influenced by wind in the trees, ocean and insect noise,  $L_{Aeq, 10 \text{ minute}}$  noise assessment criteria were derived for each relevant receiver at 1 m/s wind speed intervals over the range at which the WTGs cut in (4 m/s) and reach rated power (13 m/s).

Noise levels from the proposed WTGs were predicted at relevant receivers using an acoustic model, Soundplan. Model results incorporated noise emission data provided by the equipment manufacturer as well as island topography and wind blowing from source to receiver (worst-case meteorological conditions).

Predictions from the model indicate that WTG noise levels, whilst likely to be audible, would meet the assessment criteria at all relevant receivers, as summarised in the table below, which depicts the maximum predicted noise levels for each of the assessed catchments on the island.

| Receiver           | Period                 | Wind s | peed at hi | ub-height, | m/s |    |    |    |    |    |
|--------------------|------------------------|--------|------------|------------|-----|----|----|----|----|----|
| catchment          |                        | 4      | 5          | 6          | 8   | 9  | 10 | 11 | 12 | 13 |
| Eastern            | Predicted noise level  | 31     | 31         | 31         | 38  | 40 | 41 | 48 | 49 | 50 |
| coastal            | Criteria at all times  | 56     | 55         | 56         | 57  | 59 | 60 | 60 | 59 | 56 |
|                    | Criteria at night only | 49     | 50         | 51         | 52  | 52 | 53 | 54 | 55 | 57 |
| Central/           | Predicted noise level  | 25     | 25         | 25         | 32  | 34 | 35 | 42 | 43 | 44 |
| Joy's Shop<br>area | All times              | 47     | 48         | 49         | 49  | 50 | 50 | 50 | 50 | 49 |
| area               | Night only             | 40     | 43         | 44         | 45  | 44 | 44 | 45 | 46 | 48 |
| Western            | Predicted noise level  | 37     | 27         | 27         | 34  | 36 | 37 | 44 | 45 | 45 |
| coastal            | All times              | 46     | 47         | 47         | 48  | 48 | 49 | 50 | 51 | 53 |
|                    | Night only             | 41     | 42         | 42         | 43  | 43 | 44 | 45 | 46 | 48 |
| Southern           | Predicted noise level  | 16     | 16         | 16         | 24  | 26 | 26 | 34 | 35 | 35 |
|                    | All times              | 47     | 48         | 49         | 49  | 50 | 50 | 50 | 50 | 49 |
|                    | Night only             | 40     | 43         | 44         | 45  | 44 | 44 | 45 | 46 | 48 |

Derived LAeq, 10 minute noise criteria, dB(A), for relevant receivers



Due to their proximity, noise levels at receivers to the north of the WTG site are predicted to be higher than those in other areas; however should still meet the assessment criteria. Noise levels at receivers to the west of the WTG site are predicted to be just within the assessment criteria, around 1 dB(A) lower, at hub-height wind speeds of 11 - 12 m/s.

Predicted noise levels in the more densely populated island centre and the southern section of the island, are within the noise criteria for the night period and therefore these areas are not expected to be adversely affected by WTG noise at any time of the day.

The noise assessment criteria account for the noise level of the WTGs and reasonable levels of "swish", discrete tones and low frequency noise. It is unlikely that excessive tonality or low frequency noise will be a feature of modern wind turbines. Excessive levels of these 'annoying' characteristics have not been specifically addressed in this report; however the assumption that these characteristics are not excessive should be confirmed during commissioning.



#### Important note about your report

The sole purpose of this report and the associated services performed by Jacobs is to measure background noise levels on Lord Howe Island and assess noise from operation of Wind Turbine Generators in accordance with the scope of services set out in the contract between Jacobs and the Client. That scope of services, as described in this report, was developed with the Client.

In preparing this report, Jacobs has relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, Jacobs has not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

Jacobs derived the data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination of the project and subsequent data analysis, and reevaluation of the data, findings, observations and conclusions expressed in this report. Jacobs has prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

This report should be read in full and no excerpts are to be taken as representative of the findings. No responsibility is accepted by Jacobs for use of any part of this report in any other context.

Constraints on this assessment included seasonal insect noise during noise monitoring, which may influence background noise levels and availability of sound power data for emissions from the proposed turbines, particularly values at hub height.

This report has been prepared on behalf of, and for the exclusive use of, Jacobs's Client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the Client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party



## 1. Introduction

#### 1.1 Overview

Lord Howe Island is developing a hybrid renewable energy system to reduce its reliance on imported diesel for electricity generation. The proposed system would consist of a solar (photovoltaic) farm of 450 kW; two wind turbine generators (WTG) of 275 kW each and battery storage. The system is expected to significantly reduce the Island's diesel fuel needs for the generation of electricity.

Given the Island's environmental and spatial constraints, options for WTG locations are limited and the potential for noise impacts on residents due to the proximity of the WTG siting is a concern to the Board, some residents and business owners.

The Lord Howe Island Board (LHIB) has therefore commissioned Jacobs to assess the potential for noise generated by the proposed WTGs to result in adverse impacts on the community's amenity. The assessment consisted of background noise and meteorological monitoring, prediction of WTG noise on relevant receivers and recommendations for appropriate management.

#### 1.2 Scope of work

This report details the methodologies and findings of the noise impact assessment, which form the scope of work, and includes:

- description of the proposed WTG locations and identification of potentially affected receivers
- description of the proposed WTG operational parameters;
- background noise and meteorology monitoring;
- applicable noise monitoring guidelines and assessment criteria;
- predicted noise levels at relevant sensitive receivers with comparison against noise assessment goals;
- modifications or operating strategy that may be necessary to address unforeseen non-compliances.



## 2. Proposed WTG location and operational parameters

#### 2.1 Site description

Lord Howe Island is located around 600 km east of Port Macquarie in NSW, with a length of around 10 km and a width between 0.3 km and 2 km. The island's topography is characterised by numerous hills, including Mt Eliza in the far north, Malabar Hill, Transit Hill near the airport, Intermediate Hill, and the two higher peaks, Mount Lidgbird and Mount Gower in the south.

The majority of the island's population of around 390 residents and up to 400 tourists resides in the lower-lying northern part of the island, with the south consisting mostly of forested hills.

The WTGs are proposed to be installed in a cleared section of land near Transit Hill at a relative height of approximately 60 - 70 m above sea level. Geographical coordinates of the WTGs are proposed to be:

- WTG1 Easting 507064 m, Northing 6511667 m
- WTG2 Easting 507157 m, Northing 6511661 m

The WTG site overlooks the Pinetrees Lodge to the east, which is at a relative height of around 5 m, and closest to residences to the north, at a relative height of around 35 m above sea level.

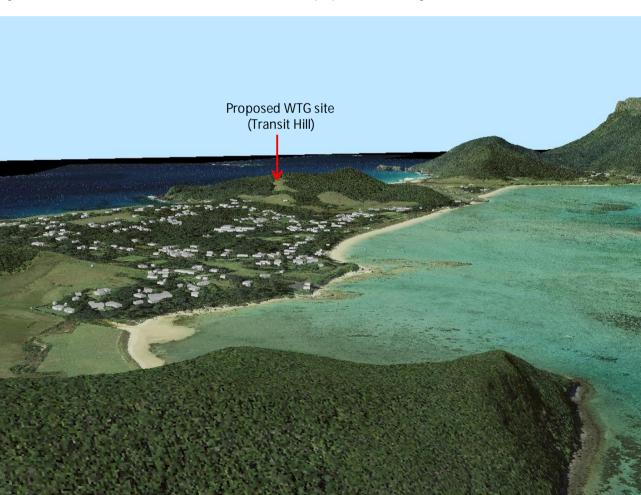



Figure 2-1 3D illustration of Lord Howe Island terrain and the proposed WTG siting



### 2.2 Operating specifications

The LHIB proposes to install two Vergnet GEV MP R 275 kW turbines, an example of which is shown for Coral Bay, WA in Figure 2-2. The turbines would be mounted on tilt up/down 55 m high towers. Manufacturer specifications are listed in Table 2-1.

Figure 2-2 Visual example of Vergnet GEV MP R turbines (Coral Bay WA) source: www.Vergnet.com



Table 2-1 Vergnet, WTG manufacturer specifications

|                    | Details  |
|--------------------|----------|
| Make               | Vergnet  |
| Model              | GEV MP R |
| Rated power,       | 275 kW   |
| Number of blades   | 2        |
| Rotor diameter     | 32 m     |
| Rotor speed, max   | 31 rpm   |
| Hub height         | 55 m     |
| Orientation        | Upw ind  |
| Gear box           | 2 stage  |
| Cut-in wind speed  | 3.5 m/s  |
| Rated wind speed   | 12.0 m/s |
| Cut-out wind speed | 25.0 m/s |



#### 2.3 Sound power levels

Sound power data for the WTGs has been provided by the manufacturer, Vergnet. Measurement was undertaken at the manufacturer's test site in France in 2010 in line with the IEC 61400-11 standard *Wind turbine generator systems – Part 11: Acoustic noise measurement techniques* and a copy of the documentation is included in Appendix A.

Sound power levels (SWLs) were derived for wind speeds between 3 m/s and 12 m/s, referenced to 10 m above ground level (AGL) and are presented in Table 2-2. Octave band noise spectra for each integer wind speed are also provided.

Australian Standard AS4959-2010 recommends referencing all sound power to hub height wind speeds. Sound Power data provided by the manufacturer, referencing wind speed at 10 m AGL, was adjusted for the WTG hub height of 55 m using a site specific shear factor of 0.42 for the proposed WTG location (see Section 3.3). Wind speed at hub height was derived from the equation in AS4959-2010:

$$V_{HH} = V_{10m} / (H_{10m} / H_{HH})^{\alpha}$$

Where a = shear factor,  $V_{HH} =$  wind speed at hub height,  $H_{HH} =$  Height at hub height.

Derived hub height wind speeds at 55 m are shown in Table 2-2 alongside the associated wind speeds at 10 m. Of the available manufacturer's data, SWLs for wind speeds between 6 m/s and 13 m/s (rated power) at hub height will be used in the prediction. For wind speeds between 3.5 m/s (cut in) and 6 m/s, the SWL for 6 m/s has been used as a conservative measure.

Table 2-2 Sound power data for Vergnet GEV MP R (Vergnet 2010)

| Wind speed    | Derived wind                                              | SWL at octave band centre frequency (Hz) |      |      |       |      |      |      |      |                   |
|---------------|-----------------------------------------------------------|------------------------------------------|------|------|-------|------|------|------|------|-------------------|
| at 10 m (m/s) | speed, m/s, at hub<br>height, (with shear<br>factor 0.42) | 63                                       | 125  | 250  | 500   | 1000 | 2000 | 4000 | 8000 | A-weighted<br>SWL |
| 3             | 6                                                         | 72.4                                     | 79.4 | 84.8 | 85.4  | 83.4 | 84.7 | 78.6 | 63.5 | 91.3              |
| 4             | 8                                                         | ND                                       | 75.2 | 89.5 | 89.3  | 85.0 | 81.8 | 74.9 | 60.3 | 93.6              |
| 5             | 9                                                         | 72.7                                     | 79.3 | 90.5 | 90.4  | 85.8 | 80.4 | 73.5 | ND   | 94.5              |
| 6             | 10                                                        | 73.7                                     | 80.7 | 89.9 | 90.3  | 86.9 | 82.2 | 74.7 | ND   | 94.6              |
| 7             | 11                                                        | 81.8                                     | 89.4 | 95.5 | 98.9  | 98.9 | 93.4 | 87.5 | 75.4 | 103.6             |
| 8             | 12                                                        | 83.6                                     | 91.3 | 96.9 | 100.0 | 98.9 | 94.5 | 89.6 | 78.7 | 104.5             |
| 9             | 13                                                        | 83.7                                     | 91.5 | 97.0 | 100.0 | 98.7 | 94.6 | 89.8 | 79.1 | 104.5             |
| 10            | -                                                         | 83.6                                     | 91.7 | 96.8 | 99.8  | 98.3 | 94.8 | 90.7 | ND   | 104.3             |
| 11            | -                                                         | 84.0                                     | 91.8 | 96.4 | 99.8  | 98.3 | 95.7 | 91.1 | ND   | 104.4             |
| 12            | -                                                         | 83.4                                     | 91.5 | 96.3 | 99.3  | 97.9 | 95.2 | 91.2 | 78.7 | 104.0             |

ND = No data



## 3. Existing environment

#### 3.1 Relevant receivers

The proximity of the WTG site to nearby receivers means that a number of residential receivers and accommodation providers may be affected by WTG noise and are relevant to this study. Relevant receivers are those where predicted WTG noise levels exceed the base noise level of 35 dB(A) (the most stringent criterion – see section 3.2) and may be adversely affected by WTG noise under some meteorological conditions.

To determine which receivers are relevant, a screening assessment was completed, with noise levels of the WTG, operating at a hub height wind speed of 12 m/s, predicted. The resulting 35 dB(A) contour line was overlaid on an image of the island and those receivers inside the contour line are considered relevant, with noise levels exceeding 35 dB(A). Receivers outside the contour line are unlikely to be adversely impacted by WTG noise. The contour line is illustrated in Figure 3-1.

The majority of relevant receivers are northwest of the WTG location. Receivers to the south are screened by the island's topography and are predicted to experience noise levels lower than the minimum noise level, hence are not considered relevant to this study. However, a number of these have been included to provide a comprehensive assessment. A schedule of relevant receivers is provided in Appendix B and a larger scale map showing these receivers is provided in Appendix C.

Considering the locations of relevant receivers to the WTG site, winds from the southeast would likely impact the greatest proportion of the island's population to the north and northwest of the WTG site. Easterly winds would also represent a risk of adverse impact to Pinetrees Lodge to the west of the WTG site, as seen in Figure 3-1.





Figure 3-1 Lord Howe Island WTG locations and sensitive receivers for hub height wind speed12 m/s



### 3.2 Background noise and wind speed monitoring

#### 3.2.1 Methodology

Background noise monitoring was undertaken at four locations representative of relevant receivers, as illustrated in Figure 3-1 and summarised in Table 3-1. Sequential 10 minute  $L_{A90}$ , ( $_{10 \text{ min}}$ ) background noise measurements were taken at each relevant receiver concurrently with 10 minute average speed and direction measurements on the wind farm site. Clocks on all monitoring equipment were set to match the time of the Lord Howe Island meteorological mast, which is set to Lord Howe Island Standard Time (half hour ahead of AEST).

| Location                                      | Easting, m | Northing, m | Elevation above sea<br>level, m                                          | Distance to<br>closest WTG<br>location, m | Distance to<br>meteorological<br>mast, m | Representative<br>of:                            |
|-----------------------------------------------|------------|-------------|--------------------------------------------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------------------------|
| M1 Cobby's<br>Corner                          | 507351     | 6510050     | 4.5                                                                      | 1600                                      | 1570                                     | Southern coastal receivers                       |
| M2 Rear of<br>Pinetrees                       | 506697     | 6511462     | 5.5                                                                      | 480                                       | 580                                      | West coastal receiver                            |
| M3 Palm Haven                                 | 507023     | 6511924     | 32.5                                                                     | 280                                       | 370                                      | East coastal receivers                           |
| M4 Near Joy's<br>shop                         | 506522     | 6511939     | 13.5                                                                     | 680                                       | 800                                      | Central island<br>receivers / Joy's<br>Shop area |
| Main<br>meteorological<br>mast                | 507261     | 6511613     | 81<br>(mast base – anemometer<br>heights included<br>10m, 30 m and 45 m) | 100                                       | n/a                                      | n/a                                              |
| Microphone-level<br>meteorological<br>station | 506522     | 6511939     | 13.5                                                                     | 680                                       | 800                                      | Na                                               |

Table 3-1 Background monitoring locations for noise and meteorology

In compliance with AS4959-2010 and DP&I (2011), monitoring was undertaken using Ngara environmental noise loggers, which are capable of collecting data between 10 Hz and 4000Hz and have an inherent noise floor of no greater than 20 dB(A). Loggers were placed within 30 m of sensitive non-associated receivers and in the direction of the WTG site. The microphone was positioned 1.2 - 1.5 m above ground and at least 5 m from any reflecting surface, remote from any extraneous noise sources. Photographs of each monitoring location are provided in Table 3-1.

Monitoring commenced on 6 January 2015 and continued until 4 February 2015. Winds were initially from a non-worst-case direction (northerly) requiring an additional two weeks of monitoring to satisfy the requirements of DP&I, AS 4959-2010 and SA EPA. That is, approximately 2,000 intervals, with at least 500 intervals in the worst-case direction. Noise was measured for wind speeds across the range at which the WTGs operate (cut in - 3.5 m/s to rated power - 12 m/s).

A weather station was operated at one location (M4) to identify the wind speed at microphone height and to measure rainfall during the monitoring period. This allowed data collected during rain and at wind speeds (at microphone height) 6 m/s or greater to be excluded to avoid excessive wind- or rain-induced noise. The monitoring period was relatively dry and only a small number of data have been excluded due to rain.

During deployment of the Ngara noise loggers, operator-attended monitoring was also undertaken to characterise the typical existing noise environment, noting dominant noise sources. Monitoring was performed with a Bruel and Kjaer 2250 sound level meter during the day and night periods for 15 minutes in each location.



#### 3.2.2 Operator-attended monitoring observations

#### A summary of observations and measured noise levels is provided in Table 3-2.

Table 3-2 Long-term monitoring locations and attended monitoring observations

| Monitoring<br>location  | Photograph o | of monitoring position | Recorded LAe<br>noise parame |                  | Observations                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|--------------|------------------------|------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |              |                        | L <sub>A90</sub>             | L <sub>Aeq</sub> |                                                                                                                                                                                                                                                                                                                                                                  |
| M1<br>Cobby's<br>Corner |              |                        | 41                           | 51               | <ul> <li>DAY</li> <li>Time: 3:50 pm</li> <li>Conditions: Calm, Partly cloudy, around 28°C.</li> <li>Cicadas in the trees dominant when active in the daytime (L<sub>Aeq</sub>~54 dB(A) at 4 - 6kHz)</li> <li>When cicadas silent, w ave noise, voices and occasional car passing by ~40 dB(A)</li> </ul>                                                         |
|                         |              |                        | 34                           | 39               | NIGHT<br>Time: 10:20 pm<br>Conditions: very light breeze from<br>east, calm and partly cloudy,<br>~21°C.<br>• Lapping of w aves on beach<br>• Some insects (not cicadas)<br>• Distant w aves<br>• A little breeze in the trees                                                                                                                                   |
| M2 Rear of<br>Pinetrees |              |                        | 41                           | 45               | <ul> <li>DAY</li> <li>Time: 4:50 pm</li> <li>Conditions: Light easterly breeze, partly cloudy</li> <li>Breeze in trees is dominant w hen it fills in.</li> <li>Laundry/chiller facilities are audible (part of local noise feature)</li> <li>Distant cicadas (~40 dB(A) at 4 - kHz)</li> <li>General accommodation noise eg voices, banging, laughter</li> </ul> |

# **JACOBS**<sup>®</sup>

| Monitoring<br>location | Photograph of monitoring position | Recorded<br>noise para | LAeq,15 minute<br>ameters | Observations                                                                                                                                                                                                                                                                                                                                                                                |  |
|------------------------|-----------------------------------|------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                        |                                   | L <sub>A90</sub>       | L <sub>Aeq</sub>          |                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                        |                                   | 35                     | 38                        | <ul> <li>NIGHT</li> <li>Time: 10:45 pm</li> <li>Conditions: very light breeze from E/ESE, partly cloudy, ~21°C.</li> <li>Distant pow er station audible in east if wind drops out</li> <li>Crickets</li> <li>Laundry building fans / chiller including just audible 100 Hz tone</li> <li>Breeze picks up from time to time - noise from rustling of leaves and branches in trees</li> </ul> |  |
| M3 Palm<br>Haven       | <image/>                          | 44                     | 52                        | <ul> <li>DAY</li> <li>Time: 5:35 pm</li> <li>Conditions: Gentle easterly<br/>breeze, Partly cloudy, ~ 26°C.</li> <li>Site is surrounded by trees.</li> <li>Surf quite audible to east,<br/>laying a continuous baseline<br/>of noise</li> <li>Birds in trees ~40 dB(A) at 2 –<br/>3 kHz</li> <li>A little local traffic</li> <li>Nearby diesel pow er station<br/>inaudible</li> </ul>      |  |
|                        |                                   | 42                     | 45                        | <ul> <li>NIGHT</li> <li>Time: 11:34 pm</li> <li>Conditions: very light breeze from east, calm and partly cloudy, ~21°C.</li> <li>Waves dominant - continuous broadband noise ~42 dB(A)</li> <li>Some breeze in trees</li> <li>Birds</li> <li>Pow er station not audible over waves and breeze</li> </ul>                                                                                    |  |

# **JACOBS**<sup>°</sup>

| Monitoring<br>location   | Photograph of monitoring position | Recorded LA<br>noise param | Aeq,15 minute<br>eters | Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|-----------------------------------|----------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                   | L <sub>A90</sub>           | $L_{Aeq}$              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| M4 Near<br>Joy's<br>shop | <image/>                          | 36                         | 53                     | DAY<br>Time: 9:33 am<br>Conditions: Gentle E/NE breeze,<br>partly cloudy, ~23°C<br>• Open space tree-fringed<br>• Joy's shop nearby – no<br>audible chillers<br>• Cicadas in trees ~50-52 dB(A)<br>at 2-3 kHz<br>• Breeze in trees when it picks<br>up<br>• A little local traffic<br>• Distant waves when wind is<br>calm<br>NIGHT<br>Time: 11:05 pm<br>Conditions: very light breeze from<br>E/SE, partly cloudy, ~21°C.<br>• Some breeze in palms<br>• Distant waves<br>• Insects |



#### 3.2.3 Data analysis

Measured  $L_{A90}$  noise levels over the monitoring period have been plotted against wind speed data at the proposed hub-height (55 m) to obtain a background noise versus wind speed characteristic for each relevant receiver.

The line of best fit for data from each monitoring location has been determined using linear, second order (quadratic) and third order (cubic) polynomials. The correlation coefficient ( $R^2$  value) for each line of best fit has been reported and the line with highest  $R^2$  value used.

Correlation coefficients for 24-hour data ranged from 0.02 to 0.14, which indicates that background noise levels, though increasing with wind speed, are not purely determined by local wind conditions. This may be due to the location being influenced by insects (cicadas in the day and evening) and the nearby waves on surrounding reefs, beaches and rocks. Insects are likely to be a seasonal influence. In addition, the monitoring locations may be sheltered from the wind in comparison to the WTG location.

The guidelines do not recommend a minimum cut-off value for correlation; however AS4959 – 2010 recommends carrying out separate correlations at different times of the day and the DP&I (2011) requires day and night correlations to be considered.

Analysis of night time background noise versus wind data shows stronger correlation, between 0.09 and 0.25. The regression line for night-only data is typically lower than the overall and daytime values by around 3 - 7 dB and varies from location to location. The reduced night noise levels are likely due to lower wind speeds as well as reductions in insect noise. Graphs of the plotted measured data and regression lines for each monitoring location are provided in Appendix D.

A summary of analysis for each relevant receiver is provided in Table 3-3.

| Location                | Monitoring<br>period        | Noise<br>logger     | Total<br>monitoring |      | f valid<br>points |        | est fit correl<br>ficient, R <sup>2</sup> , fo |                       | Best fit co<br>coefficie     |                                |
|-------------------------|-----------------------------|---------------------|---------------------|------|-------------------|--------|------------------------------------------------|-----------------------|------------------------------|--------------------------------|
|                         |                             | serial no.          | intervals           | All  | Night             | Linear | 2 <sup>nd</sup> order                          | 3 <sup>rd</sup> order | Day<br>3 <sup>rd</sup> order | Night<br>3 <sup>rd</sup> order |
| M1<br>Cobby's<br>Corner | 5 Jan 2015 –<br>4 Feb 2015  | ARL Ngara<br>8780C0 | 3369                | 2544 | 1070              | 0.13   | 0.14                                           | 0.14                  | 0.15                         | 0.25                           |
| M2<br>Pinetrees         | 5 Jan 2015 –<br>31 Jan 2015 | ARL Ngara<br>8780A5 | 2978                | 2756 | 1065              | 0.06   | 0.06                                           | 0.06                  | 0.05                         | 0.2                            |
| M3 Palm<br>Haven        | 5 Jan 2015 –<br>26 Jan 2015 | ARL Ngara<br>8780A4 | 2846                | 2450 | 992               | 0.03   | 0.03                                           | 0.04                  | 0.06                         | 0.12                           |
| M4 Joy's<br>shop        | 6 Jan 2015 –<br>4 Feb 2015  | ARL Ngara<br>8780BA | 4019                | 2227 | 917               | 0.02   | 0.02                                           | 0.02                  | 0.06                         | 0.09                           |

#### Table 3-3 Long-term monitoring details

#### 3.3 Wind shear

Appendix E provides a curve of wind shear at the met mast location, with an average wind shear factor of 0.42. An analysis of wind shear vs wind direction indicates that easterly winds strongly influence this value. The Board's meteorological monitoring mast has been in use since November 2014 and this value may change over time, hence should be reviewed when a full year of meteorological data is available.



### 4. Noise assessment criteria

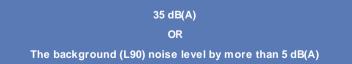
#### 4.1 WTG noise sources

Wind is a clean, cheap and inexhaustible source of energy and can provide sustainable solutions to communities that are isolated from the electricity grid. However, it is widely recognised that wind farms have a noise output that varies with wind speed and unique noise generating characteristics that can be annoying to some people.

Traditionally, the major sources of noise on a WTG were the gearbox and the fast moving blades (aerodynamic noise). Gearboxes on modern WTGs are generally very quiet; leaving wind moving across the blade as the dominant noise source for most turbines.

Air moving across the blade produces acoustic waves at the trailing edge and tip, which are often perceived as a "swishing" or "thumping" sound. This noise can vary in intensity, called amplitude modulation (the difference between minimum and maximum noise levels).

Other historically annoying aspects of WTG noise include tonal and low frequency characteristics. Tonal noise, the emergence of discrete frequency bands in the broader spectrum, can be developed by vortices around the blade. These do not typically occur in larger (>10 kW) well designed and maintained wind turbines.


Low frequency noise is typically not a significant feature of modern wind turbine noise and is usually less than that of other environmental noise sources such as wind and the ocean.

#### 4.2 Wind farm noise guidelines

The NSW Department of Planning and Infrastructure (DP&I) released the *Draft NSW Planning Guidelines for Wind Farms* for consultation in December 2011. The document contains noise guidelines intended to provide guidance on how to measure and assess environmental impacts from wind farms under the *Environmental Planning and Assessment Act 1997.* The draft guideline was developed with consideration of other guidelines used widely around Australia, including New Zealand; however methodologies and practices in the document most closely follow the South Australian EPA (2009) *Wind farms environmental noise guidelines* and Australian Standard *AS4959 – 2010 Acoustics – Measurement, prediction and assessment of noise from wind turbine generators.* Therefore, even though the NSW guideline is in draft form, noise criteria from this document will be used in this assessment since it adopts other recognised and widely used guidelines and is suitably stringent.

A characteristic of wind farms is that the noise level from each WTG rises as the wind speed at the site increases. This increase is generally complemented by an equal or greater increase in the background noise level, which may substantially or even completely mask the WTG noise.

Noise guidelines have been developed to account for fundamental characteristics of wind turbine noise, as described above, and have been established for sensitive receivers located in quiet rural areas. Considering the wind speed at the site, the predicted equivalent noise level (L<sub>eq</sub>, 10 minute), adjusted for any excessive levels of tonality, amplitude modulation or low frequency, should not exceed the greater of:



This goal:

- applies at all relevant receivers not associated with the wind farm,
- applies for wind speeds from cut-in to rated power of the WTG and each integer wind speed in between.



DP&I (2011) also requires criteria to be established on the basis of separate daytime (7am to 10pm) and night time (10pm to 7am) periods.

#### 4.3 Project-specific noise assessment criteria

Based on analysis of background noise level and wind speed data for each relevant receiver, noise assessment criteria have been derived from the 3<sup>rd</sup> order best fit regression line for night and day, since this presented the highest correlation coefficient. Criteria are summarised in Table 4-1. Plotted noise criteria are shown in Figure 4-1 to Figure 4-4.

| Receiver          | Period     | Equation describing assessment                                 | Wind | dspee | d at hu | b-heig | ht, m/s | ;  |    |    |    |
|-------------------|------------|----------------------------------------------------------------|------|-------|---------|--------|---------|----|----|----|----|
| catchment         |            | criteria                                                       | 4    | 5     | 6       | 7      | 8       | 9  | 10 | 11 | 12 |
| Eastern coastal   | All times  | y=-0.0819x <sup>3</sup> + 1.7872x <sup>2</sup> -11.47x+78.11   | 56   | 55    | 56      | 57     | 59      | 60 | 60 | 59 | 56 |
| receivers         | Night only | $y = 0.0205x^3 - 0.4687x^2 + 4.1876x + 38.38$                  | 49   | 50    | 51      | 52     | 52      | 53 | 54 | 55 | 57 |
| Central receivers | All times  | y = -0.0039x <sup>3</sup> -0.0336x <sup>2</sup> +1.6729x+40.64 | 47   | 48    | 49      | 49     | 50      | 50 | 50 | 50 | 49 |
|                   | Night only | $y = 0.0744x^3 - 1.8x^2 + 14.292x + 7.18$                      | 40   | 43    | 44      | 45     | 44      | 44 | 45 | 46 | 48 |
| Western coastal   | All times  | y = 0.0093x <sup>3</sup> -0.1753x <sup>2</sup> +1.5769x+41.36  | 46   | 47    | 47      | 48     | 48      | 49 | 50 | 51 | 53 |
| receivers         | Night only | $y = 0.022x^3 - 0.474x^2 + 3.8983x + 31.17$                    | 41   | 42    | 42      | 43     | 43      | 44 | 45 | 46 | 48 |
| Southern island   | All times  | $y = -0.0089x^{3} + 0.3021x^{2} - 1.7583x + 49.48$             | 47   | 48    | 49      | 49     | 50      | 50 | 50 | 50 | 49 |
| receivers         | Night only | $y = -0.007x^3 + 0.1668x^2 + 0.0916x + 39.67$                  | 40   | 43    | 44      | 45     | 44      | 44 | 45 | 46 | 48 |

Table 4-1 Derived LAeq, 10 minute noise criteria for relevant receivers

The acoustic environment of Lord Howe Island is influenced by noise sources other than local wind conditions. Insect noise, particularly during the day and evening, and waves, provide a relatively constant background level. The background noise level is several decibels louder during the day than observed during the night when insects are not as prevalent.

Noise criteria are intended to preserve the amenity on the island for residents and visitors, particularly during the night period where activities such as sleep and relaxation rely on a quieter environment. WTG noise levels exceeding suitable levels at night may create annoyance and reduce well-being.

Therefore, the recommendation in AS4959-2010 and the DP&I (2011) requirement to consider separate noise goals for the night period, has been adopted in this assessment, as shown in Table 4-1.


#### 4.4 Seasonal variation

The influence of insects on the background noise level was substantial during the day and evening periods of the monitoring study and is likely to decrease into the winter months. It can be argued that monitoring during winter may be necessary to derive noise criteria in the absence of insects.

However, in lieu of further monitoring, night criteria determined during the summer period, which were not heavily influenced by insects, provide a suitable basis for the assessment of noise impacts with regard to the potential for sleep disturbance and reduced amenity. In addition, monitoring during this time allowed for the seasonal worst-case wind direction from the southeast to be considered.

Therefore, with the adoption of a night time noise assessment criteria for each relevant receiver, the potential impact on the amenity of the island can be appropriately assessed without further monitoring.





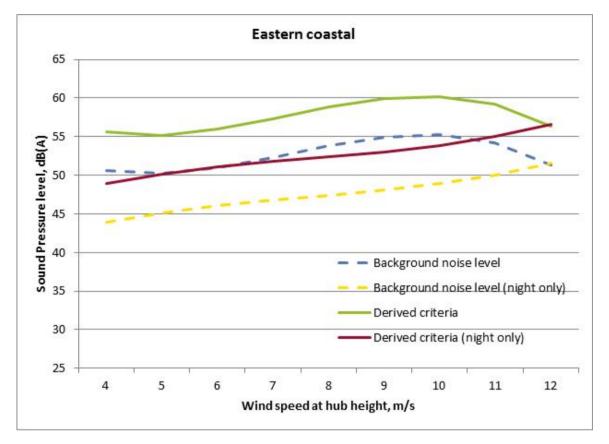
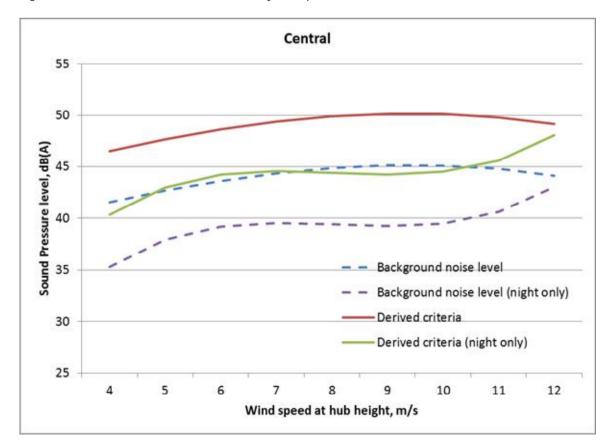




Figure 4-2 Derived noise criteria for central / Joy's Shop area-centre receivers





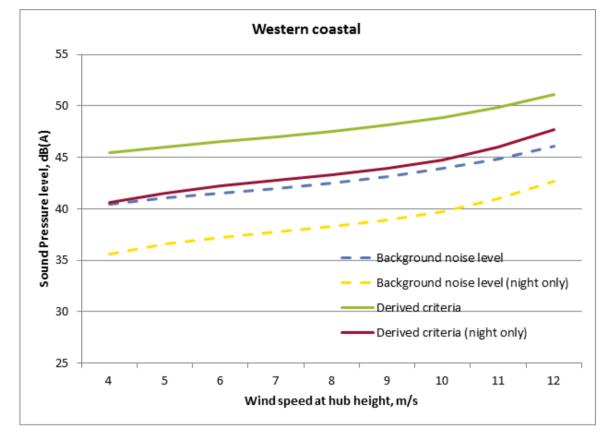
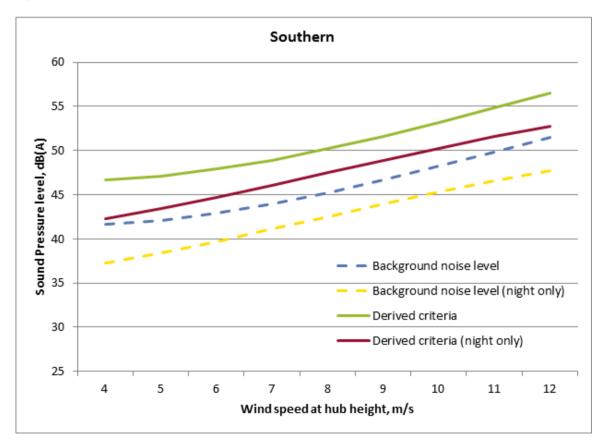




Figure 4-3 Derived noise criteria for western coastal receivers

Figure 4-4 Derived noise criteria for southern receivers





## 5. Noise prediction

#### 5.1 Noise model selection and development

SoundPlan v7.2 was used to develop a 3D model of Lord Howe Island and to predict the propagation of WTG noise to all relevant receivers. Predictions included sound power levels of both WTGs, atmospheric and ground absorption as well as any structural or topographical screening. Detailed topography was created based on LIDAR data (a remote sensing technology that measures distance with a laser and analyses the reflected light.) for the island.

The calculation algorithms recommended by the DP&I and associated guidelines include ISO 9613-2 and CONCAWE. Studies (eg Bowder *et al* 2009, ETSU 2000) have shown that these algorithms provide varying levels of accuracy depending on the terrain, ground absorption conditions and wind speed; however the ISO 9613-2 algorithm, in particular the octave band prediction method, is most widely used and typically represents the most accurate result. Estimated confidence levels of this method are 85% that noise levels in practice would not exceed the calculated level by more than 1 dB(A). This method is also the only algorithm specifically referred to in AS4959 so will be adopted for this assessment.

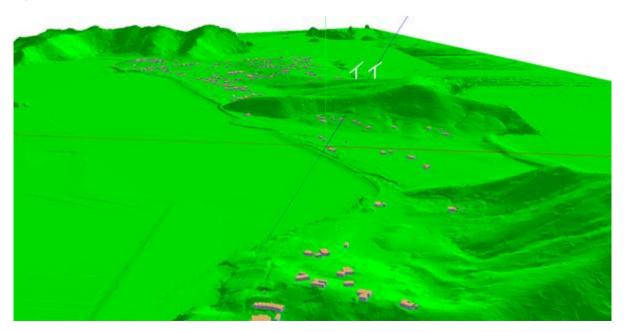

The parameters included in the acoustic model are specified in Table 5-1. Noise levels were predicted using sound power levels for all integer wind speeds between cut-in (3.5 m/s) and rated (12 m/s) wind speeds.

Table 5-1 Modelled parameters

| Parameter                                                | Value                                                 |
|----------------------------------------------------------|-------------------------------------------------------|
| Sound power level                                        | Test levels provided by manufacture (see Section 2.3) |
| Atmospheric conditions (temperature / relative humidity) | 10°C / 80%                                            |
| Ground factors                                           | 0 (hard ground)                                       |
| Barrier attenuation                                      | No barrier attenuation assumed                        |
| Wind speed and direction                                 | 1 m/s to 5 m/s source to receiver                     |
| Estim ated model accuracy                                | ±1.5 dB                                               |

An illustration of the 3D acoustic model is provided in

Figure 5-1 3D acoustic model





### 5.2 Predicted results

Results for each relevant receiver with two WTGs operating at once are provided in Appendix A and show predicted levels for each integer wind speed between 4 m/s and 12 m/s (at 10 m AGL).

A summary of predicted results is presented for each of the four representative receiver catchments, with the highest predicted noise level and worst-affected receivers for each catchment shown in Table 5-2. Refer to Appendix C for the locations of each of these worst-affected receivers.

Predictions indicate that, while WTGs are likely to be audible at many receivers, with levels close to or exceeding the background noise level for specific wind speed intervals, the criteria for the total period (day and night) or for night only would not be exceeded. Hence the risk of adverse impacts on the amenity of the island is low.

Noise levels at receivers 30 and 31 in the eastern coastal catchment are predicted to be higher than in other catchments due to their proximity to the WTG site. However, higher background noise levels should reduce the overall impacts in this location and predicted noise levels are below the criteria.

Noise levels at receivers 164 and 165, to the west of the WTG, site are predicted to be closest to the assessment criteria, only around 1 dB(A) less than the criteria at wind speeds of 11 - 12 m/s at hub height.

Predicted noise levels in the more densely populated island centre, represented by receivers 95 and 101, are within the noise criteria for the night period and therefore this catchment is not expected to be adversely affected by WTG noise. Similarly, predicted levels at southern receivers, are below the criteria.

As discussed in Section 4.1, typical characteristics of WTG noise are accounted for in the noise criteria and it is unlikely that tonality or low frequency noise will be present, an assumption supported by manufacturer's data. Therefore, these characteristics have not been included in the predicted results. However the assumption that these characteristics are not present should be validated during commissioning of the WTGs.

| Receiver           | Worst-                  | Period                 | Wind | speed at | hub-heig | ∣ht, m/s |    |    |    |    |    |
|--------------------|-------------------------|------------------------|------|----------|----------|----------|----|----|----|----|----|
| catchment          | affected<br>receiver(s) |                        | 4    | 5        | 6        | 8        | 9  | 10 | 11 | 12 | 13 |
| Eastern            | 30, 31                  | Predicted noise level  | 31   | 31       | 31       | 38       | 40 | 41 | 48 | 49 | 50 |
| coastal            |                         | Criteria at all times  | 56   | 55       | 56       | 57       | 59 | 60 | 60 | 59 | 56 |
|                    |                         | Criteria at night only | 49   | 50       | 51       | 52       | 52 | 53 | 54 | 55 | 57 |
| Central/           | 95, 101                 | Predicted noise level  | 25   | 25       | 25       | 32       | 34 | 35 | 42 | 43 | 44 |
| Joy's<br>Shop area |                         | All times              | 47   | 48       | 49       | 49       | 50 | 50 | 50 | 50 | 49 |
| Shop area          |                         | Night only             | 40   | 43       | 44       | 45       | 44 | 44 | 45 | 46 | 48 |
| Western            | 164, 165                | Predicted noise level  | 37   | 27       | 27       | 34       | 36 | 37 | 44 | 45 | 45 |
| coastal            |                         | All times              | 46   | 47       | 47       | 48       | 48 | 49 | 50 | 51 | 53 |
|                    |                         | Night only             | 41   | 42       | 42       | 43       | 43 | 44 | 45 | 46 | 48 |
| Southern           | 190-192                 | Predicted noise level  | 16   | 16       | 16       | 24       | 26 | 26 | 34 | 35 | 35 |
|                    |                         | All times              | 47   | 48       | 49       | 49       | 50 | 50 | 50 | 50 | 49 |
|                    |                         | Night only             | 40   | 43       | 44       | 45       | 44 | 44 | 45 | 46 | 48 |

Table 5-2 Derived LAeq, 10 minute noise criteria for relevant receivers



## 6. Contingency strategy

Where it is demonstrated through compliance monitoring during commissioning of the WTGs or in response to a complaint, that the WTGs exceed noise predicted noise levels at the relevant criteria, noise management strategies may be considered. The specific management strategy adopted would depend on the conditions which cause the exceedances and should be appropriately investigated. Options include:

- Identify the conditions and times that lead to undue impacts.
- Turn off one or both WTGs that are identified as causing undue impacts during specific conditions (wind directions and strengths), a mitigation process called sector management.
- Consult with the manufacturer to identify noise control options of the turbines such as:
  - variable speed;
  - changes to the pitch regulation regime;
  - vortex generators and/or
  - trailing edge serrations.



### Appendix A. Manufacturer sound power data

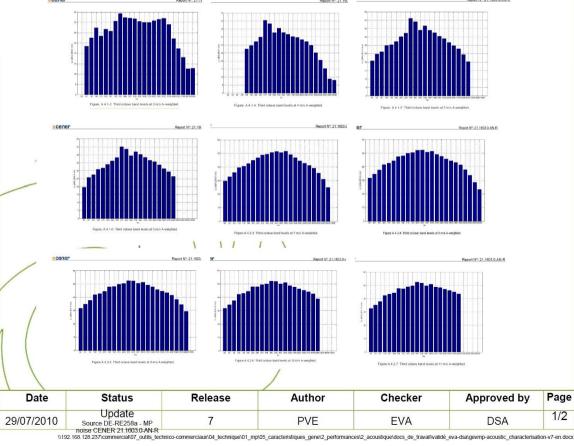


**GEV MP** Acoustic characterization

#### **1. SOUND POWER LEVEL**

Measurement of Acoustic Noise Emission of the GEV MP 32/275 has been performed following the IEC 61400-11 standard "Wind turbine generator systems - Part 11: Acoustic noise measurement techniques".

MEASNET member (http://www.measnet.com/members.html) CENER (http://www.cener.com), who did proceed to measurement of the Acoustic Noise Emission of the GEV MP wind turbine installed on our test site in Gommerville, close to Orléans, France, certified the following values in its report ("No. 21.1603.0-AN-R" dated 05/05/2010).


We hereby report sound power level (Lw) obtained.

| Lw (dB(A))            | 3m/s<br>(*) | 4m/s  | 5m/s  | 6m/s  | 7m/s   | 8m/s   | 9m/s   | 10m/s  | 11m/s  |
|-----------------------|-------------|-------|-------|-------|--------|--------|--------|--------|--------|
| at Low Speed<br>(LS)  | 86.30       | 92.86 | 94.62 | 95.41 |        |        |        |        |        |
| at High Speed<br>(HS) |             |       |       |       | 103.36 | 104.42 | 104.64 | 104.22 | 104.03 |

(\*) wind speed measured at 10m (32' 10")

#### 2. OCTAVE BAND NOISE SPECTRUM

Measurement of Octave band noise spectrum of the GEV MP 32/275 has also been performed by CENER, following the IEC 61400-11 standard "Wind turbine generator systems - Part 11: Acoustic noise measurement techniques". The final report ("No. 21.1603.0-AN-R" dated 05/05/2010) shows the 3rd octave band spectrum from 3 to 11m/s:





# Appendix B. Relevant receivers

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Catchment      | Receiver | Easting, m  | Northing, y | Elevation, m | Distance from  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|-------------|-------------|--------------|----------------|
| Eastern<br>Coastal         1         506475         6512714         41         1205           2         506494         6512675         43         1162           3         506533         6512684         46         1151           4         506538         6512789         39         1215           6         506627         6512578         46         1014           7         506635         651270         38         1206           8         506637         6512690         44         1112           9         506662         6512572         45         995           10         506667         651230         47         771           12         506688         651249         34         1251           11         506667         651288         49         816           14         506714         651285         41         1082           15         506744         651285         41         1082           16         506764         651285         42         970           20         506764         651285         42         970           20         506784         651298                                                                                        |                |          | Lioting, in |             |              | nearest WTG, m |
| Eastern<br>Coastal         2         506494         6512675         43         1162           3         506533         6512684         46         1151           4         506638         6512771         42         1227           5         506609         6512789         39         1215           6         506627         6512578         46         1014           7         506635         6512790         38         1206           8         506667         6512572         45         995           10         506667         651272         45         995           10         506667         651230         47         771           12         506680         6512303         47         771           12         506680         6512385         49         816           14         506710         6512685         41         1082           15         506714         651245         51         847           18         506763         651245         51         847           18         506764         6512385         42         970           20         506784         651245                                                                                      |                | 1        | 506475      | 6512714     | 41           | · · · ·        |
| Eastern<br>Coastal         3         506533         6512684         46         1151           4         506538         6512771         42         1227           5         506609         6512789         39         1215           6         506627         6512578         46         1014           7         506635         6512790         38         1206           8         506637         6512849         34         1251           10         5066667         6512330         47         771           12         506688         6512490         49         909           13         506670         6512884         9         816           14         506710         6512885         41         1082           15         506714         6512817         35         1206           16         506763         6512445         51         847           18         506763         6512455         42         970           20         506784         6512285         47         691           21         506784         6512285         47         691           22         506784         6512245 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>              |                |          |             |             |              |                |
| Eastern<br>Coastal         4         506538         6512771         42         1227           5         506609         6512789         39         1215           6         506627         6512578         46         1014           7         506635         6512570         38         1206           8         506637         6512690         44         1112           9         506662         6512572         45         995           10         506680         6512330         47         771           12         506688         6512430         49         909           13         506690         6512388         49         816           14         506714         6512817         35         1206           16         506714         6512455         45         958           17         506740         6512445         51         847           18         506766         6512285         47         691           21         506764         6512285         47         691           21         506764         6512285         47         691           21         506831         6512043 <th></th> <td></td> <td></td> <td></td> <td>46</td> <td>-</td>                  |                |          |             |             | 46           | -              |
| Eastern<br>Coastal         6         506627         6512578         46         1014           7         506635         6512790         38         1206           8         5066637         6512890         44         1112           9         506662         6512572         45         995           10         506667         6512849         34         1251           11         506680         6512330         47         771           12         506688         6512490         49         909           13         506690         6512386         49         816           14         506710         6512856         41         1082           15         506714         6512817         35         1206           16         506717         6512555         45         958           17         506764         6512285         42         970           20         506764         6512285         42         970           20         506784         6512285         47         691           21         506783         6512368         44         751           22         506784         6512245<                                                                             |                | 4        | 506538      |             | 42           |                |
| Fastern<br>Coastal         7         506635         6512790         38         1206           8         506637         6512690         44         1112           9         506662         6512572         45         995           10         506667         6512849         34         1251           11         506680         6512330         47         771           12         506688         6512490         49         909           13         506690         6512388         49         816           14         506710         6512847         35         1206           15         506714         6512817         35         1206           16         506717         651255         45         958           17         506740         6512445         51         847           18         506763         6512285         42         970           20         506784         6512368         44         751           22         506784         6512368         44         751           22         506784         651203         36         452           26         506802         6512018 <th></th> <td>5</td> <td>506609</td> <td>6512789</td> <td>39</td> <td>1215</td> |                | 5        | 506609      | 6512789     | 39           | 1215           |
| B         506637         6512690         44         1112           9         506662         6512572         45         995           10         506667         6512849         34         1251           11         506680         6512330         47         771           12         506688         6512490         49         909           13         506690         6512388         49         816           14         506710         6512685         41         1082           15         506714         6512817         35         1206           16         506717         6512555         45         958           17         506740         6512186         44         589           19         506764         6512285         47         691           21         506783         6512185         42         970           20         506764         6512285         47         691           21         506783         6512198         43         602           24         506802         6512198         43         602           25         506831         6512030         46         <                                                                                     |                | 6        | 506627      | 6512578     | 46           | 1014           |
| 9         506662         6512572         45         995           10         506667         6512849         34         1251           11         506680         6512330         47         771           12         506688         6512490         49         909           13         506690         6512388         49         816           14         506710         6512885         41         1082           15         506714         6512817         35         1206           16         506717         6512555         45         958           17         506740         6512166         44         589           19         506764         6512358         42         970           20         506764         6512358         44         751           22         506784         6512358         44         751           22         506784         6512305         46         648           23         506794         6512198         43         602           24         506802         6512305         46         680           25         506831         6512305         46         <                                                                                     |                |          |             | 6512790     |              |                |
| Eastern<br>Coastal         10         506667         6512849         34         1251           11         506680         6512330         47         771           12         506688         6512490         49         909           13         506690         6512388         49         816           14         506710         6512685         41         1082           15         506714         6512817         35         1206           16         50670         6512445         51         847           18         506763         6512445         51         847           18         506764         651285         42         970           20         506764         651285         47         691           21         506783         651238         44         751           22         506784         651245         47         648           23         506794         6512043         36         452           26         506831         6512043         36         452           26         50689         6512031         35         423           29         506872         65119010                                                                                   |                |          |             |             |              |                |
| Eastern<br>Coastal         11         506680         6512330         47         771           12         506688         6512490         49         909           13         506690         6512388         49         816           14         506710         6512685         41         1082           15         506714         6512817         35         1206           16         506717         6512555         45         958           17         506740         6512445         51         847           18         506763         651245         51         847           18         506764         651285         42         970           20         506766         6512285         47         691           21         506783         6512185         44         751           22         506784         6512245         47         648           23         506794         6512103         36         452           26         506839         6512103         36         452           26         506839         6512031         35         423           29         506872         6511978 <th></th> <td>-</td> <td></td> <td></td> <td></td> <td></td>                    |                | -        |             |             |              |                |
| Eastern<br>Coastal         12         506688         6512490         49         909           13         506690         6512388         49         816           14         506710         6512685         41         1082           15         506714         6512817         35         1206           16         506717         6512555         45         958           17         506740         6512445         51         847           18         506763         6512166         44         589           19         506764         6512285         42         970           20         506784         6512285         47         691           21         506783         6512245         47         648           23         506794         6512245         47         648           23         506794         6512198         43         602           24         506802         6512198         44         616           25         506831         6512031         36         452           26         506839         6512031         35         423           29         506872         6511973 </th <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>              |                |          |             |             |              |                |
| Eastern<br>Coastal         13         506690         6512388         49         816           14         506710         6512685         41         1082           15         506714         6512817         35         1206           16         506717         6512555         45         958           17         506740         6512445         51         847           18         506763         6512166         44         589           19         506764         6512285         42         970           20         506764         6512285         47         691           21         506783         6512285         47         648           23         506794         6512198         43         602           24         506802         6512218         44         616           25         506831         6512033         36         452           26         506839         6512103         36         497           27         506845         6512031         35         423           29         506872         6511978         39         376           30         506927         65119710<                                                                             |                |          |             |             |              |                |
| Eastern<br>Coastal         14         506710         6512685         41         1082           15         506714         6512817         35         1206           16         506717         6512555         45         958           17         506740         6512445         51         847           18         506763         6512166         44         589           19         506764         651285         42         970           20         506766         651285         47         691           21         506783         65121358         44         751           22         506784         6512198         43         602           24         506802         6512198         43         602           24         506802         6512103         36         452           26         506831         6512031         35         423           28         506869         6512031         35         423           29         506872         6511978         39         376           30         506927         6511910         36         293           31         50702         6512667 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>                     |                |          |             |             |              |                |
| Eastern<br>Coastal         15         506714         6512817         35         1206           16         506717         6512555         45         958           17         506740         6512445         51         847           18         506763         6512166         44         589           19         506764         651285         42         970           20         506766         6512285         47         691           21         506783         6512188         44         751           22         506784         6512245         47         648           23         506794         6512198         43         602           24         506802         6512218         44         616           25         506831         6512043         36         452           26         506839         6512100         36         497           27         506845         6512031         35         423           29         506872         6511978         39         376           30         506927         6511970         36         293           31         50702         6512667                                                                                  |                |          |             |             |              |                |
| Eastern<br>Coastal         16         506717         6512555         45         958           17         506740         6512445         51         847           18         506763         6512166         44         589           19         506764         6512585         42         970           20         506766         6512285         47         691           21         506783         6512198         44         751           22         506784         6512198         43         602           24         506802         6512198         43         602           24         506831         6512043         36         452           26         506839         6512100         36         497           27         506845         6512035         46         680           28         506809         6512031         35         423           29         506872         6511978         39         376           30         506927         6511923         33         276           31         50701         6512667         22         1679           33         505736         6512582 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>                     |                |          |             |             |              |                |
| Coastal         17         506740         6512445         51         847           18         506763         6512166         44         589           19         506764         6512585         42         970           20         506766         6512285         47         691           21         506783         6512358         44         751           22         506784         6512245         47         648           23         506794         6512198         43         602           24         506802         6512218         44         616           25         506831         6512043         36         452           26         506839         6512100         36         497           27         506845         6512305         46         680           28         506869         6512031         35         423           29         506872         6511978         39         376           30         506927         6511910         36         293           31         507020         6512667         22         1679           33         505736         6512582                                                                                           | Eastern        | -        |             |             |              |                |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Coastal        |          |             |             |              |                |
| 19         506764         6512585         42         970           20         506766         6512285         47         691           21         506783         6512358         44         751           22         506784         6512245         47         648           23         506794         6512198         43         602           24         506802         6512218         44         616           25         506831         6512043         36         452           26         506839         6512100         36         497           27         506845         6512305         46         680           28         506869         6512031         35         423           29         506872         6511978         39         376           30         506927         6511910         36         293           31         507021         6512667         22         1679           32         505720         6512667         22         1679           33         505736         6512582         20         1617           34         505736         6512532         19                                                                                              |                |          |             |             |              |                |
| 20506766651228547691215067836512358447512250678465122454764823506794651219843602245068026512184461625506831651204336452265068396512100364972750684565123054668028506869651203135423295068726511978393763050692765119103629331507021651192333276325057206512667221679335057366512582201617345057366512532191588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |          |             |             |              |                |
| 215067836512358447512250678465122454764823506794651219843602245068026512184461625506831651204336452265068396512100364972750684565123054668028506869651203135423295068726511978393763050692765119103629331507021651192333276325057206512667221679335057366512582201617345057366512532191588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | -        |             |             | .=           |                |
| 235067946512198436022450680265122184461625506831651204336452265068396512100364972750684565123054668028506869651203135423295068726511978393763050692765119103629331507021651192333276325057206512667221679335057366512582201617345057366512532191588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |          |             |             |              |                |
| 24         506802         6512218         44         616           25         506831         6512043         36         452           26         506839         6512100         36         497           27         506845         6512305         46         680           28         506869         6512031         35         423           29         506872         6511978         39         376           30         506927         6511910         36         293           31         507021         6512667         22         1679           32         505736         6512582         20         1617           34         505736         6512532         19         1588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 22       | 506784      | 6512245     | 47           | 648            |
| 25         506831         6512043         36         452           26         506839         6512100         36         497           27         506845         6512305         46         680           28         506869         6512031         35         423           29         506872         6511978         39         376           30         506927         6511910         36         293           31         507021         6512667         22         1679           32         505736         6512582         20         1617           34         505736         6512532         19         1588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 23       | 506794      | 6512198     | 43           | 602            |
| 265068396512100364972750684565123054668028506869651203135423295068726511978393763050692765119103629331507021651192333276325057206512667221679335057366512582201617345057366512532191588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 24       | 506802      | 6512218     | 44           | 616            |
| 2750684565123054668028506869651203135423295068726511978393763050692765119103629331507021651192333276325057206512667221679335057366512582201617345057366512532191588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |          |             | 6512043     | 36           |                |
| 28506869651203135423295068726511978393763050692765119103629331507021651192333276325057206512667221679335057366512582201617345057366512532191588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |          |             |             |              |                |
| 295068726511978393763050692765119103629331507021651192333276325057206512667221679335057366512582201617345057366512532191588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |          |             |             |              |                |
| 30         506927         6511910         36         293           31         507021         6511923         33         276           32         505720         6512667         22         1679           33         505736         6512582         20         1617           34         505736         6512532         19         1588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |          |             |             |              |                |
| 31         507021         6511923         33         276           32         505720         6512667         22         1679           33         505736         6512582         20         1617           34         505736         6512532         19         1588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |          |             |             |              |                |
| 32         505720         6512667         22         1679           33         505736         6512582         20         1617           34         505736         6512532         19         1588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |             |             |              |                |
| 335057366512582201617345057366512532191588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |             |             |              |                |
| 34 505736 6512532 19 1588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          |             |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |          |             |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | -        |             |             |              |                |
| 36 505794 6512635 20 1601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          |             |             |              |                |
| 37 505828 6512530 13 1512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          |             |             |              |                |
| 38 505865 6512642 17 1549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          |             |             |              |                |
| 39 505909 6512399 15 1372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 39       | 505909      | 6512399     | 15           | 1372           |
| 40 505959 6512450 17 1359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          |             |             |              |                |
| 41 505970 6512505 17 1383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 41       | 505970      | 6512505     | 17           | 1383           |
| 42 505981 6512528 17 1388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          |             |             |              |                |
| 43 505996 6512507 19 1363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          |             |             |              |                |
| 44 506031 6512527 19 1349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          |             |             |              |                |
| 45 506032 6512565 17 1373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          |             |             |              |                |
| Central island         46         506049         6512366         5         1238           47         506059         6512529         18         1329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Central island |          |             |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |          |             |             |              |                |
| 48         506151         6512582         11         1298           49         506153         6512417         6         1187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |          |             |             |              |                |
| 49         506153         6512417         6         1187           50         506178         6512471         5         1202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | -        |             |             |              |                |
| 50         506176         6512471         5         1202           51         506192         6512667         16         1332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |          |             |             |              |                |
| 51         500132         6512607         10         1032           52         506240         6512500         6         1179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |          |             |             |              |                |
| 53         506287         6512631         16         1244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          |             |             |              |                |
| 54 506294 6512775 23 1354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          |             |             |              |                |
| 55 506300 6512529 12 1158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          |             |             |              |                |
| 56 506330 6512703 27 1274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          |             |             | 27           |                |
| 57 506341 6512181 10 895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 57       | 506341      | 6512181     | 10           | 895            |
| 58 506388 6512554 28 1120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 58       |             |             | 28           | 1120           |
| 59 506390 6512728 33 1261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 59       | 506390      | 6512728     | 33           | 1261           |
| 60 506396 6512687 33 1223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 60       |             | 6512687     | 33           |                |
| 61 506402 6512462 24 1040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 61       | 506402      | 6512462     | 24           | 1040           |

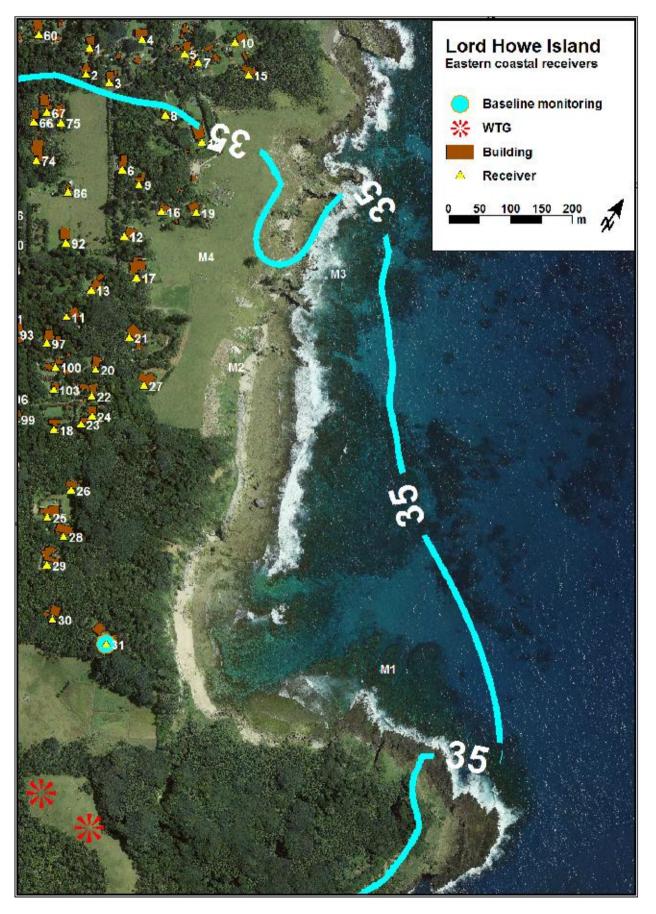


| Catchment      | Receiver   | Easting, m       | Northing, y        | Elevation, m | Distance from  |
|----------------|------------|------------------|--------------------|--------------|----------------|
|                | _          |                  |                    |              | nearest WTG, m |
|                | 62         | 506406           | 6512111            | 13           | 802            |
|                | 63         | 506409           | 6512525            | 28           | 1084           |
|                | 64         | 506420           | 6512474            | 28           | 1038           |
|                | 65         | 506439           | 6512484            | 31           | 1033           |
|                | 66         | 506466           | 6512565            | 35           | 1083           |
|                | 67         | 506475           | 6512589            | 36           | 1098           |
|                | 68         | 506478           | 6512350            | 24           | 906            |
|                | 69         | 506481           | 6512082            | 12           | 725            |
|                | 70         | 506487           | 6512132            | 16           | 750            |
|                | 71         | 506492           | 6512330            | 26           | 882            |
|                | 72         | 506500           | 6512044            | 12           | 688            |
|                | 73         | 506502           | 6512359            | 30           | 897            |
|                | 74         | 506503           | 6512515            | 35           | 1022           |
|                | 75         | 506503           | 6512588            | 39           | 1082           |
|                | 76         | 506507           | 6512414            | 33           | 937            |
| Central island | 77         | 506514           | 6512335            | 30           | 871            |
|                | 78         | 506520           | 6512135            | 20           | 726            |
|                | 80         | 506534           | 6512374            | 34           | 889            |
|                | 81         | 506543           | 6512040            | 18           | 650            |
|                | 82         | 506545           | 6511982            | 17           | 617            |
|                | 83         | 506551           | 6512336            | 35           | 848            |
|                | 84         | 506559           | 6511930            | 16           | 580            |
|                | 85         | 506572           | 6512296            | 38           | 804            |
|                | 86         | 506574           | 6512500            | 41           | 971            |
|                | 87         | 506591           | 6511945            | 20           | 558            |
|                | 88         | 506592           | 6512056            | 26           | 620            |
|                | 89         | 506592           | 6512248            | 39           | 754            |
|                | 90         | 506594           | 6511988            | 23           | 578            |
|                | 91         | 506598           | 6512274            | 41           | 770            |
|                | 92         | 506615           | 6512430            | 42           | 890            |
|                | 93         | 506626           | 6512261            | 43           | 743            |
|                | 94         | 506647           | 6512023            | 33           | 557            |
|                | 95         | 506662           | 6511938            | 26           | 496            |
|                | 96         | 506675           | 6512169            | 45           | 641            |
|                | 97         | 506677           | 6512277            | 46           | 728            |
|                | 98         | 506678           | 6511997            | 35           | 516            |
|                | 99         | 506702           | 6512148            | 46           | 607            |
|                | 100        | 506710           | 6512253            | 48           | 690            |
|                | 100        | 506713           | 6512017            | 39           | 504            |
|                | 101        | 506713           | 6512065            | 41           | 538            |
|                | 102        |                  |                    |              |                |
|                | 105        | 506727<br>505570 | 6512221<br>6512688 |              |                |
|                |            |                  |                    |              |                |
|                | 109<br>110 | 505587           | 6512735            | 16<br>15     | 1826<br>1698   |
|                |            | 505598           | 6512515            | 9            |                |
|                | 111        | 505609           | 6512875            |              | 1895           |
|                | 112        | 505610           | 6512602            | 21           | 1732           |
|                | 113        | 505613           | 6512710            | 18           | 1791           |
|                | 114        | 505626           | 6512647            | 19           | 1744           |
|                | 115        | 505650           | 6512807            | 18           | 1820           |
|                | 116        | 505652           | 6512829            | 18           | 1832           |
|                | 117        | 505654           | 6512776            | 18           | 1798           |
|                | 118        | 505662           | 6512448            | 12           | 1609           |
| Western        | 119        | 505663           | 6512671            | 20           | 1727           |
| coastal        | 120        | 505668           | 6512539            | 18           | 1650           |
|                | 121        | 505669           | 6512591            | 21           | 1677           |
|                | 122        | 505705           | 6512394            | 9            | 1546           |
|                | 123        | 505791           | 6512282            | 11           | 1419           |
|                | 124        | 505800           | 6512308            | 11           | 1423           |
|                | 125        | 505819           | 6512352            | 12           | 1426           |
|                | 126        | 505821           | 6512267            | 10           | 1385           |
|                | 127        | 505826           | 6512382            | 12           | 1435           |
|                | 128        | 505833           | 6512295            | 12           | 1387           |
|                | 129        | 505862           | 6512266            | 9            | 1348           |
|                | 130        | 505903           | 6512315            | 11           | 1335           |
|                | 150        | 000900           | 0012010            | 11           | 1000           |



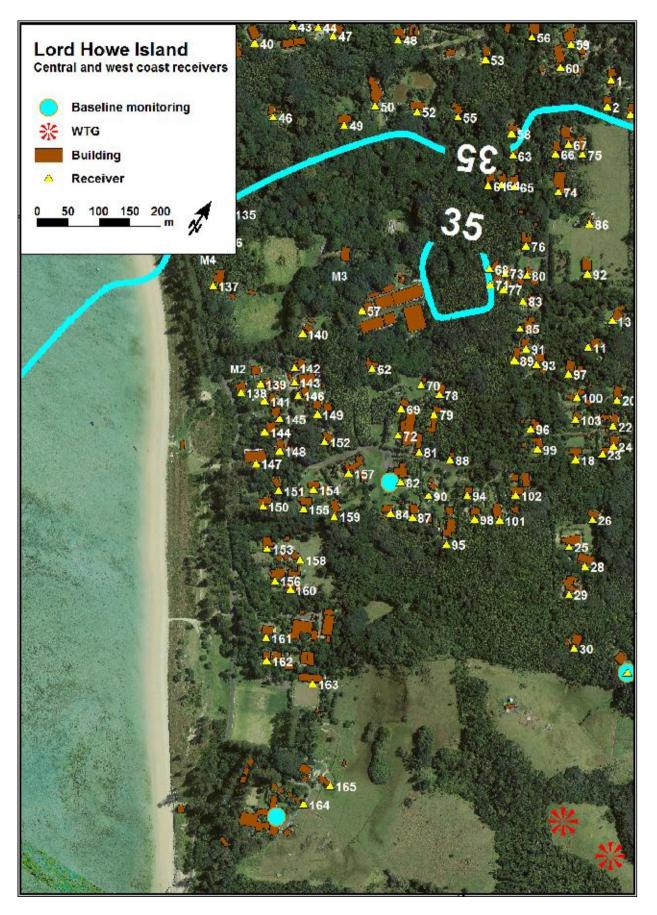
| Catchment | Receiver   | Easting, m       | Northing, y        | Elevation, m | Distance from  |
|-----------|------------|------------------|--------------------|--------------|----------------|
|           |            |                  |                    |              | nearest WTG, m |
|           | 131        | 505933           | 6512261            | 6            | 1284           |
|           | 132        | 505974           | 6512244            | 5            | 1239           |
|           | 133        | 506011           | 6512215            | 5            | 1194           |
|           | 134        | 506042           | 6512177            | 5            | 1149           |
|           | 135        | 506077           | 6512196            | 5            | 1127           |
|           | 136        | 506082           | 6512147            | 5            | 1100           |
|           | 137        | 506117           | 6512083            | 5            | 1042           |
|           | 138        | 506248           | 6511963            | 6            | 876            |
|           | 139        | 506268           | 6511992            | 6            | 868            |
|           | 140        | 506281           | 6512097            | 7            | 902            |
|           | 141        | 506289           | 6511972            | 6            | 842            |
|           | 142        | 506300           | 6512044            | 6            | 860            |
|           | 143        | 506313           | 6512024            | 5            | 840            |
|           | 144        | 506316           | 6511930            | 6            | 802            |
|           | 145        | 506325           | 6511961            | 6            | 805            |
|           | 146        | 506329           | 6512010            | 5            | 820            |
| Western   | 140        | 506332           | 6511880            | 6            | 772            |
| coastal   | 148        | 506353           | 6511918            | 5            | 764            |
|           | 149        | 506372           | 6512000            | 5            | 778            |
|           | 149        | 506372           | 6511828            | 6            | 713            |
|           | 151        | 506387           | 6511863            | 6            | 715            |
|           |            |                  |                    |              | 734            |
|           | 152        | 506406           | 6511969            | 8            |                |
|           | 153        | 506422           | 6511774            | 6            | 661            |
|           | 154        | 506433           | 6511895            | 6            | 681            |
|           | 155        | 506437           | 6511859            | 6            | 667            |
|           | 156<br>157 | 506461           | 6511737            | 6<br>7       | 619<br>671     |
|           |            | 506466           | 6511948            |              |                |
|           | 158        | 506477           | 6511788            | 6            | 611            |
|           | 159        | 506485           | 6511877            | 5            | 628            |
|           | 160        | 506490           | 6511739            | 6            | 590            |
|           | 161        | 506499           | 6511652            | 6            | 577            |
|           | 162        | 506521           | 6511621            | 6            | 558            |
|           | 163        | 506603           | 6511630            | 6            | 477            |
|           | 164        | 506697           | 6511459            | 6            | 437            |
|           | 165        | 506717           | 6511507            | 6            | 399            |
|           | 167        | 507247           | 6509707            | 19           | 1971           |
|           | 168        | 507262           | 6509553            | 41           | 2124           |
|           | 169        | 507284           | 6509720            | 17           | 1961           |
|           | 170        | 507301           | 6509529            | 46           | 2151           |
|           | 171        | 507328           | 6509606            | 35           | 2079           |
|           | 172        | 507339           | 6509538            | 42           | 2147           |
|           | 173        | 507356           | 6510050            | 5            | 1646           |
| Southern  | 174        | 507372           | 6509510            | 44           | 2179           |
| coastal   | 175        | 507375           | 6509509            | 44           | 2180           |
| ooustai   | 179        | 507438           | 6509479            | 47           | 2220           |
|           | 183        | 507517           | 6510003            | 16           | 1727           |
|           | 187        | 507334           | 6510529            | 6            | 1174           |
|           | 188        | 507474           | 6510389            | 6            | 1346           |
|           | 100        |                  |                    | 10           | 000            |
|           | 190        | 507068           | 6510985            | 18           | 689            |
|           |            | 507068<br>507087 | 6510985<br>6510971 | 18           | 689<br>704     |
|           | 190        |                  |                    |              |                |




# Appendix C. Relevant receivers map

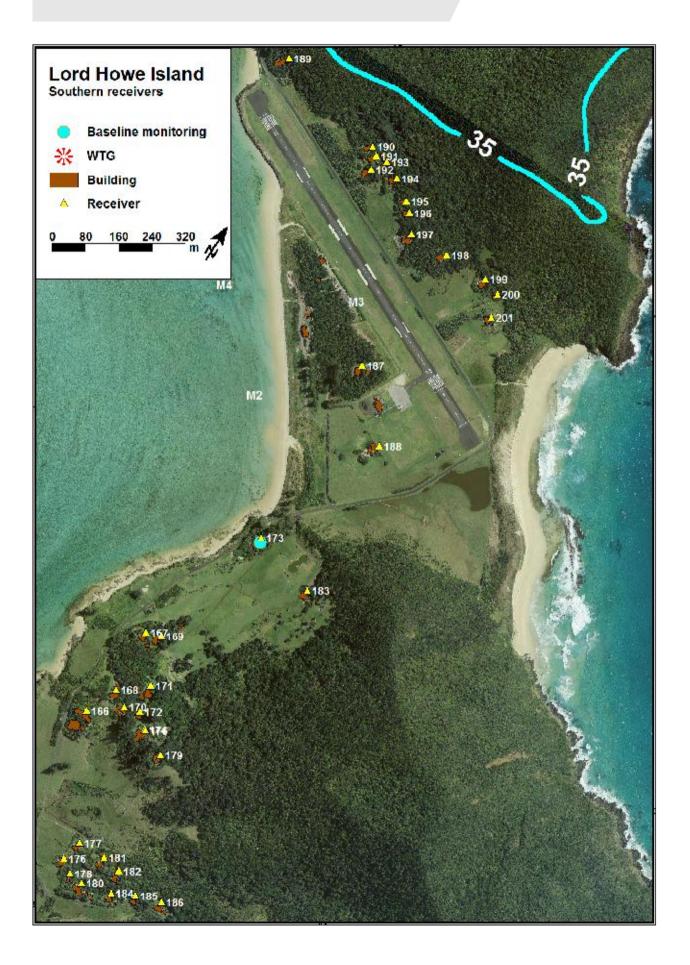


#### C.1 East coastal receivers


Wind Turbine Generator Noise Impact Assessment

## **JACOBS**

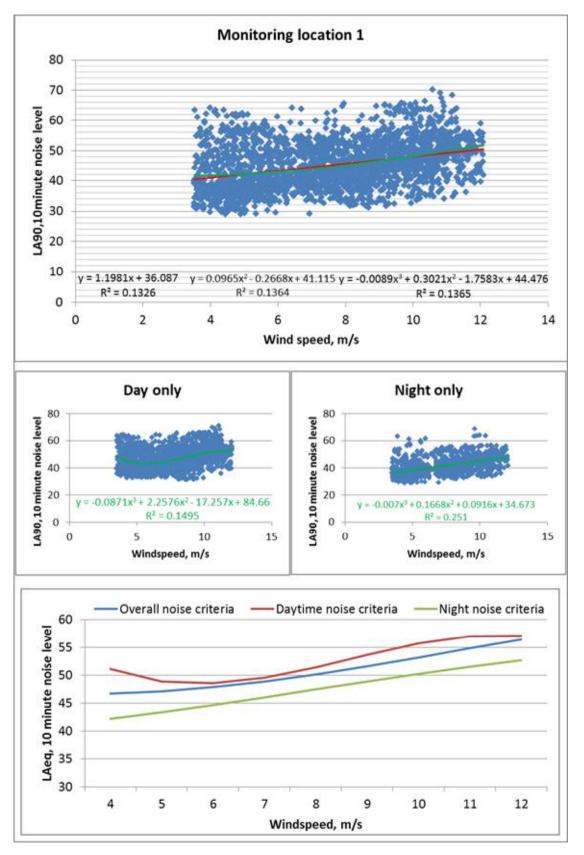



C.2 Central and west coastal receivers

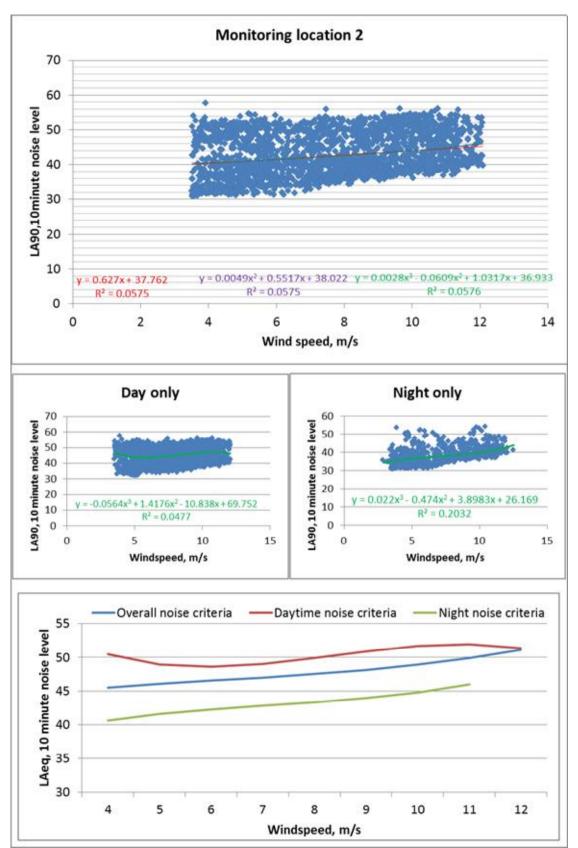
# **JACOBS**



#### **C.3 Southern receivers**

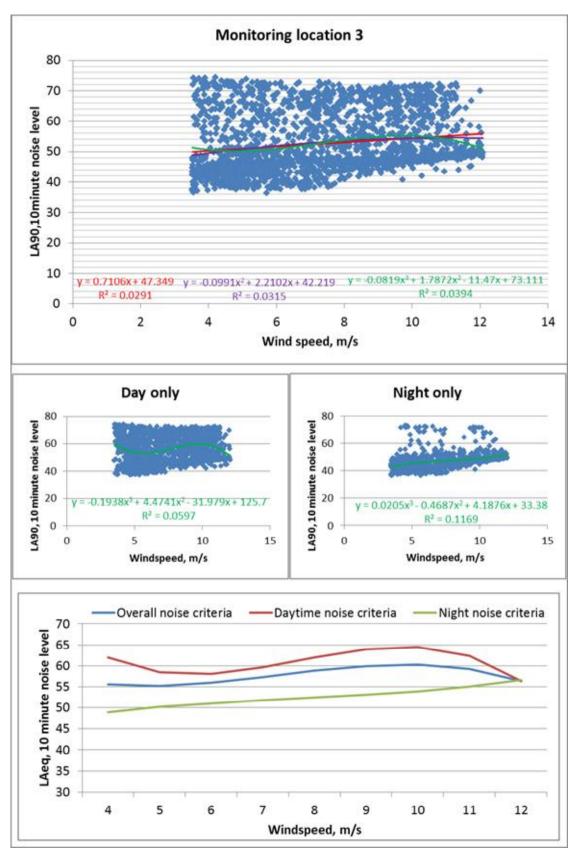

# **JACOBS**






### Appendix D. Background noise and wind data analysis

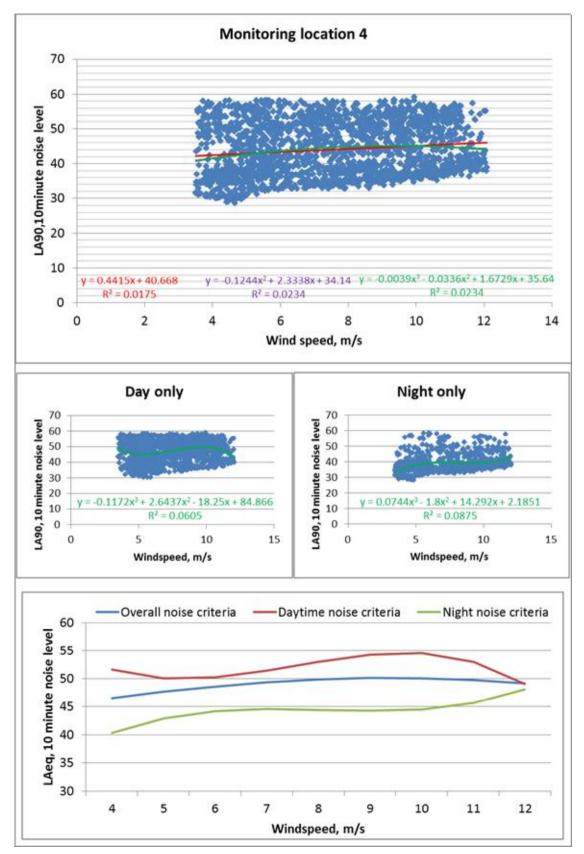
#### D.1 Monitoring location 1 – Cobby's Corner





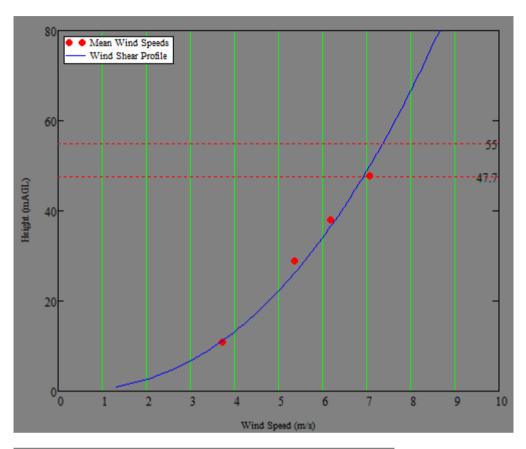


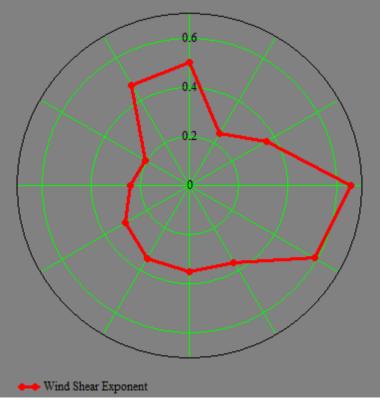

### D.2 Monitoring location 2 – Pinetrees Lodge






### D.3 Monitoring location 3 – Palm Haven








## Appendix E. Wind shear







## Appendix F. Noise predictions at all relevant receivers

#### F.1 East coastal receivers

| East coastal receivers        |    |    |    |    |    |    |    |    |    |
|-------------------------------|----|----|----|----|----|----|----|----|----|
| Wind speed at hub-height, m/s | 4  | 5  | 6  | 8  | 9  | 10 | 11 | 12 | 13 |
| Noise criteria (All times)    | 56 | 55 | 56 | 57 | 59 | 60 | 60 | 59 | 56 |
| Noise criteria (Night only)   | 49 | 50 | 51 | 52 | 52 | 53 | 54 | 55 | 57 |
| 1                             | 12 | 12 | 12 | 20 | 21 | 22 | 30 | 31 | 31 |
| 2                             | 17 | 17 | 17 | 24 | 26 | 27 | 34 | 35 | 35 |
| 3                             | 17 | 17 | 17 | 24 | 26 | 27 | 34 | 35 | 35 |
| 4                             | 12 | 12 | 12 | 20 | 21 | 22 | 30 | 31 | 31 |
| 5                             | 14 | 14 | 14 | 22 | 24 | 24 | 32 | 33 | 33 |
| 6                             | 18 | 18 | 18 | 25 | 27 | 28 | 35 | 36 | 37 |
| 7                             | 14 | 14 | 14 | 22 | 24 | 25 | 32 | 33 | 33 |
| 8                             | 17 | 17 | 17 | 25 | 27 | 27 | 34 | 35 | 36 |
| 9                             | 17 | 17 | 17 | 24 | 26 | 26 | 34 | 35 | 35 |
| 10                            | 14 | 14 | 14 | 22 | 24 | 25 | 32 | 33 | 33 |
| 11                            | 21 | 21 | 21 | 28 | 30 | 31 | 38 | 39 | 40 |
| 12                            | 19 | 19 | 19 | 26 | 28 | 29 | 36 | 37 | 38 |
| 13                            | 20 | 20 | 20 | 28 | 30 | 30 | 38 | 39 | 39 |
| 14                            | 17 | 17 | 17 | 24 | 26 | 27 | 34 | 35 | 35 |
| 15                            | 15 | 15 | 15 | 23 | 25 | 25 | 33 | 34 | 34 |
| 16                            | 15 | 15 | 15 | 22 | 24 | 25 | 33 | 34 | 34 |
| 17                            | 20 | 20 | 20 | 27 | 29 | 30 | 37 | 38 | 39 |
| 18                            | 24 | 24 | 24 | 31 | 33 | 33 | 41 | 42 | 42 |
| 19                            | 16 | 16 | 16 | 23 | 25 | 26 | 34 | 35 | 35 |
| 20                            | 22 | 22 | 22 | 29 | 31 | 32 | 39 | 40 | 41 |
| 21                            | 21 | 21 | 21 | 29 | 30 | 31 | 39 | 40 | 40 |
| 22                            | 23 | 23 | 23 | 30 | 32 | 33 | 40 | 41 | 41 |
| 23                            | 23 | 23 | 23 | 31 | 33 | 33 | 41 | 42 | 42 |
| 24                            | 23 | 23 | 23 | 30 | 32 | 33 | 41 | 42 | 42 |
| 25                            | 26 | 26 | 26 | 33 | 35 | 36 | 43 | 45 | 45 |
| 26                            | 25 | 25 | 25 | 32 | 34 | 35 | 43 | 44 | 44 |
| 27                            | 22 | 22 | 22 | 30 | 31 | 32 | 40 | 41 | 41 |
| 28                            | 27 | 27 | 27 | 34 | 36 | 36 | 44 | 45 | 45 |
| 29                            | 28 | 28 | 28 | 35 | 37 | 38 | 45 | 46 | 46 |
| 30                            | 30 | 30 | 30 | 37 | 39 | 40 | 47 | 49 | 49 |
| 31                            | 31 | 31 | 31 | 38 | 40 | 41 | 48 | 49 | 50 |



### F.2 Central island receivers

| Central island receivers      |    |    |    |    |    |    |    |    |    |
|-------------------------------|----|----|----|----|----|----|----|----|----|
| Wind speed at hub-height, m/s | 4  | 5  | 6  | 8  | 9  | 10 | 11 | 12 | 13 |
| Noise criteria (All times)    | 47 | 48 | 49 | 49 | 50 | 50 | 50 | 50 | 49 |
| Noise criteria (Night only)   | 40 | 43 | 44 | 45 | 44 | 44 | 45 | 46 | 48 |
| 32                            | 13 | 13 | 13 | 20 | 22 | 23 | 30 | 31 | 31 |
| 33                            | 13 | 13 | 13 | 21 | 22 | 23 | 30 | 31 | 32 |
| 34                            | 13 | 13 | 13 | 21 | 23 | 23 | 30 | 31 | 32 |
| 35                            | 13 | 13 | 13 | 20 | 22 | 23 | 30 | 31 | 31 |
| 36                            | 13 | 13 | 13 | 21 | 23 | 23 | 30 | 31 | 32 |
| 37                            | 14 | 14 | 14 | 21 | 23 | 24 | 31 | 32 | 32 |
| 38                            | 13 | 13 | 13 | 21 | 23 | 24 | 31 | 32 | 32 |
| 39                            | 15 | 15 | 15 | 22 | 24 | 25 | 32 | 33 | 33 |
| 40                            | 15 | 15 | 15 | 22 | 24 | 25 | 32 | 33 | 33 |
| 41                            | 12 | 12 | 12 | 20 | 22 | 22 | 30 | 31 | 31 |
| 42                            | 11 | 11 | 11 | 18 | 20 | 21 | 29 | 30 | 30 |
| 43                            | 14 | 14 | 14 | 21 | 23 | 24 | 31 | 32 | 33 |
| 44                            | 15 | 15 | 15 | 22 | 24 | 25 | 32 | 33 | 34 |
| 45                            | 12 | 12 | 12 | 20 | 22 | 22 | 30 | 31 | 31 |
| 46                            | 16 | 16 | 16 | 23 | 25 | 26 | 33 | 34 | 34 |
| 47                            | 15 | 15 | 15 | 23 | 25 | 25 | 32 | 33 | 34 |
| 48                            | 15 | 15 | 15 | 23 | 25 | 25 | 33 | 34 | 34 |
| 49                            | 16 | 16 | 16 | 24 | 26 | 26 | 34 | 35 | 35 |
| 50                            | 16 | 16 | 16 | 24 | 26 | 26 | 33 | 35 | 35 |
| 51                            | 15 | 15 | 15 | 23 | 25 | 25 | 32 | 34 | 34 |
| 52                            | 16 | 16 | 16 | 24 | 26 | 26 | 34 | 35 | 35 |
| 53                            | 12 | 12 | 12 | 19 | 21 | 22 | 29 | 30 | 30 |
| 54                            | 10 | 10 | 10 | 18 | 20 | 20 | 27 | 29 | 29 |
| 55                            | 15 | 15 | 15 | 22 | 24 | 25 | 33 | 34 | 34 |
| 56                            | 15 | 15 | 15 | 22 | 24 | 25 | 32 | 33 | 34 |
| 57                            | 19 | 19 | 19 | 26 | 28 | 29 | 36 | 37 | 37 |
| 58                            | 17 | 17 | 17 | 24 | 26 | 27 | 34 | 35 | 35 |
| 59                            | 13 | 13 | 13 | 21 | 23 | 23 | 31 | 32 | 32 |
| 60                            | 13 | 13 | 13 | 20 | 22 | 22 | 30 | 31 | 31 |
| 61                            | 18 | 18 | 18 | 25 | 27 | 28 | 35 | 36 | 36 |
| 62                            | 20 | 20 | 20 | 28 | 30 | 30 | 38 | 39 | 39 |
| 63                            | 16 | 16 | 16 | 24 | 26 | 26 | 34 | 35 | 35 |
| 64                            | 18 | 18 | 18 | 25 | 27 | 28 | 35 | 36 | 36 |
| 65                            | 17 | 17 | 17 | 25 | 27 | 28 | 35 | 36 | 36 |
|                               |    |    |    |    |    |    |    |    |    |



| Central island receivers      |    |    |    |    |    |    |    |    |    |
|-------------------------------|----|----|----|----|----|----|----|----|----|
| Wind speed at hub-height, m/s | 4  | 5  | 6  | 8  | 9  | 10 | 11 | 12 | 13 |
| Noise criteria (All times)    | 47 | 48 | 49 | 49 | 50 | 50 | 50 | 50 | 49 |
| Noise criteria (Night only)   | 40 | 43 | 44 | 45 | 44 | 44 | 45 | 46 | 48 |
| 67                            | 17 | 17 | 17 | 25 | 27 | 27 | 34 | 36 | 36 |
| 68                            | 16 | 16 | 16 | 24 | 25 | 26 | 34 | 35 | 35 |
| 69                            | 21 | 21 | 21 | 29 | 31 | 31 | 39 | 40 | 40 |
| 70                            | 21 | 21 | 21 | 28 | 30 | 31 | 38 | 39 | 40 |
| 71                            | 17 | 17 | 17 | 24 | 26 | 26 | 35 | 35 | 36 |
| 72                            | 22 | 22 | 22 | 29 | 31 | 32 | 39 | 40 | 40 |
| 73                            | 18 | 18 | 18 | 25 | 27 | 28 | 36 | 37 | 37 |
| 74                            | 18 | 18 | 18 | 25 | 27 | 28 | 35 | 36 | 37 |
| 75                            | 17 | 17 | 17 | 25 | 27 | 27 | 35 | 36 | 36 |
| 76                            | 19 | 19 | 19 | 26 | 28 | 29 | 36 | 37 | 37 |
| 77                            | 17 | 17 | 17 | 24 | 26 | 27 | 35 | 36 | 36 |
| 78                            | 21 | 21 | 21 | 29 | 31 | 31 | 39 | 40 | 40 |
| 80                            | 18 | 18 | 18 | 25 | 27 | 27 | 35 | 36 | 37 |
| 81                            | 22 | 22 | 22 | 30 | 32 | 32 | 40 | 41 | 41 |
| 82                            | 23 | 23 | 23 | 30 | 32 | 33 | 40 | 41 | 41 |
| 83                            | 17 | 17 | 17 | 24 | 26 | 27 | 35 | 36 | 36 |
| 84                            | 24 | 24 | 24 | 31 | 33 | 33 | 41 | 42 | 42 |
| 85                            | 18 | 18 | 18 | 25 | 27 | 28 | 36 | 37 | 37 |
| 86                            | 18 | 18 | 18 | 26 | 28 | 28 | 36 | 37 | 37 |
| 87                            | 24 | 24 | 24 | 31 | 33 | 34 | 41 | 42 | 43 |
| 88                            | 23 | 23 | 23 | 30 | 32 | 33 | 40 | 41 | 41 |
| 89                            | 21 | 21 | 21 | 28 | 30 | 31 | 38 | 39 | 40 |
| 90                            | 24 | 24 | 24 | 31 | 33 | 33 | 41 | 42 | 42 |
| 91                            | 21 | 21 | 21 | 28 | 30 | 31 | 38 | 39 | 39 |
| 92                            | 16 | 16 | 16 | 23 | 25 | 26 | 34 | 35 | 35 |
| 93                            | 21 | 21 | 21 | 28 | 30 | 31 | 38 | 39 | 40 |
| 94                            | 24 | 24 | 24 | 31 | 33 | 34 | 41 | 42 | 43 |
| 95                            | 25 | 25 | 25 | 32 | 34 | 35 | 42 | 43 | 44 |
| 96                            | 23 | 23 | 23 | 30 | 32 | 33 | 40 | 41 | 41 |
| 97                            | 21 | 21 | 21 | 29 | 31 | 31 | 39 | 40 | 40 |
| 98                            | 25 | 25 | 25 | 32 | 34 | 35 | 42 | 43 | 43 |
| 99                            | 23 | 23 | 23 | 31 | 32 | 33 | 41 | 42 | 42 |
| 100                           | 22 | 22 | 22 | 29 | 31 | 32 | 39 | 40 | 41 |
| 101                           | 25 | 25 | 25 | 32 | 34 | 35 | 42 | 43 | 44 |
| 102                           | 24 | 24 | 24 | 32 | 33 | 34 | 42 | 43 | 43 |
| 103                           | 23 | 23 | 23 | 30 | 32 | 32 | 40 | 41 | 41 |
|                               |    |    |    |    |    |    |    |    |    |



### F.3 Western coastal receivers

| West coastal receivers        |    |    |    |    |    |    |    |    |    |
|-------------------------------|----|----|----|----|----|----|----|----|----|
| Wind speed at hub-height, m/s | 4  | 5  | 6  | 8  | 9  | 10 | 11 | 12 | 13 |
| Noise criteria (All times)    | 46 | 47 | 47 | 48 | 48 | 49 | 50 | 51 | 53 |
| Noise criteria (Night only)   | 41 | 42 | 42 | 43 | 43 | 44 | 45 | 46 | 48 |
| 105                           | 7  | 7  | 7  | 15 | 17 | 17 | 24 | 25 | 26 |
| 109                           | 8  | 8  | 8  | 16 | 18 | 19 | 26 | 27 | 27 |
| 110                           | 12 | 12 | 12 | 20 | 22 | 23 | 30 | 31 | 31 |
| 111                           | 7  | 7  | 7  | 14 | 16 | 17 | 24 | 25 | 25 |
| 112                           | 12 | 12 | 12 | 20 | 22 | 22 | 29 | 31 | 31 |
| 113                           | 10 | 10 | 10 | 17 | 19 | 20 | 27 | 29 | 29 |
| 114                           | 9  | 9  | 9  | 17 | 19 | 19 | 27 | 28 | 28 |
| 115                           | 8  | 8  | 8  | 15 | 17 | 18 | 25 | 26 | 26 |
| 116                           | 7  | 7  | 7  | 15 | 17 | 17 | 24 | 25 | 26 |
| 117                           | 8  | 8  | 8  | 15 | 17 | 18 | 25 | 26 | 26 |
| 118                           | 13 | 13 | 13 | 21 | 22 | 23 | 30 | 31 | 32 |
| 119                           | 10 | 10 | 10 | 18 | 19 | 20 | 28 | 29 | 29 |
| 120                           | 11 | 11 | 11 | 19 | 21 | 21 | 29 | 30 | 30 |
| 121                           | 13 | 13 | 13 | 20 | 22 | 23 | 30 | 31 | 31 |
| 122                           | 13 | 13 | 13 | 21 | 23 | 24 | 31 | 32 | 32 |
| 123                           | 14 | 14 | 14 | 22 | 24 | 24 | 32 | 33 | 33 |
| 124                           | 13 | 13 | 13 | 21 | 23 | 24 | 31 | 32 | 32 |
| 125                           | 13 | 13 | 13 | 20 | 22 | 23 | 31 | 32 | 32 |
| 126                           | 15 | 15 | 15 | 22 | 24 | 25 | 32 | 33 | 33 |
| 127                           | 11 | 11 | 11 | 18 | 20 | 21 | 28 | 29 | 29 |
| 128                           | 15 | 15 | 15 | 22 | 24 | 25 | 32 | 33 | 33 |
| 129                           | 15 | 15 | 15 | 22 | 24 | 25 | 32 | 33 | 34 |
| 130                           | 15 | 15 | 15 | 23 | 24 | 25 | 32 | 33 | 34 |
| 131                           | 15 | 15 | 15 | 23 | 25 | 25 | 33 | 34 | 34 |
| 132                           | 16 | 16 | 16 | 23 | 25 | 26 | 33 | 34 | 34 |
| 133                           | 16 | 16 | 16 | 24 | 26 | 26 | 33 | 35 | 35 |
| 134                           | 17 | 17 | 17 | 24 | 26 | 27 | 34 | 35 | 35 |
| 135                           | 17 | 17 | 17 | 24 | 26 | 27 | 34 | 35 | 35 |
| 136                           | 17 | 17 | 17 | 25 | 26 | 27 | 34 | 36 | 36 |
| 137                           | 18 | 18 | 18 | 25 | 27 | 28 | 35 | 36 | 36 |
| 138                           | 19 | 19 | 19 | 27 | 29 | 29 | 37 | 38 | 38 |
| 139                           | 20 | 20 | 20 | 27 | 29 | 29 | 37 | 38 | 38 |
| 140                           | 19 | 19 | 19 | 27 | 28 | 29 | 36 | 38 | 38 |
| 141                           | 20 | 20 | 20 | 27 | 29 | 30 | 37 | 38 | 38 |
| 142                           | 20 | 20 | 20 | 27 | 29 | 30 | 37 | 38 | 38 |



| West coastal receivers        |    |    |    |    |    |    |    |    |    |
|-------------------------------|----|----|----|----|----|----|----|----|----|
| Wind speed at hub-height, m/s | 4  | 5  | 6  | 8  | 9  | 10 | 11 | 12 | 13 |
| Noise criteria (All times)    | 46 | 47 | 47 | 48 | 48 | 49 | 50 | 51 | 53 |
| Noise criteria (Night only)   | 41 | 42 | 42 | 43 | 43 | 44 | 45 | 46 | 48 |
| 143                           | 20 | 20 | 20 | 27 | 29 | 30 | 37 | 38 | 39 |
| 144                           | 20 | 20 | 20 | 28 | 30 | 30 | 38 | 39 | 39 |
| 145                           | 20 | 20 | 20 | 28 | 30 | 30 | 38 | 39 | 39 |
| 146                           | 20 | 20 | 20 | 27 | 29 | 30 | 37 | 39 | 39 |
| 147                           | 21 | 21 | 21 | 28 | 30 | 31 | 38 | 39 | 39 |
| 148                           | 21 | 21 | 21 | 28 | 30 | 31 | 38 | 39 | 39 |
| 149                           | 21 | 21 | 21 | 28 | 30 | 31 | 38 | 39 | 39 |
| 150                           | 21 | 21 | 21 | 29 | 31 | 31 | 39 | 40 | 40 |
| 151                           | 21 | 21 | 21 | 29 | 31 | 31 | 39 | 40 | 40 |
| 152                           | 21 | 21 | 21 | 29 | 30 | 31 | 39 | 40 | 40 |
| 153                           | 22 | 22 | 22 | 30 | 31 | 32 | 40 | 41 | 41 |
| 154                           | 22 | 22 | 22 | 29 | 31 | 32 | 39 | 40 | 41 |
| 155                           | 22 | 22 | 22 | 29 | 31 | 32 | 39 | 41 | 41 |
| 156                           | 23 | 23 | 23 | 30 | 32 | 33 | 40 | 41 | 42 |
| 157                           | 22 | 22 | 22 | 29 | 31 | 32 | 39 | 40 | 41 |
| 158                           | 23 | 23 | 23 | 30 | 32 | 33 | 40 | 41 | 42 |
| 159                           | 23 | 23 | 23 | 30 | 32 | 33 | 40 | 41 | 41 |
| 160                           | 23 | 23 | 23 | 31 | 32 | 33 | 41 | 42 | 42 |
| 161                           | 24 | 24 | 24 | 31 | 33 | 33 | 41 | 42 | 42 |
| 162                           | 24 | 24 | 24 | 31 | 33 | 34 | 41 | 42 | 43 |
| 163                           | 25 | 25 | 25 | 33 | 34 | 35 | 43 | 44 | 44 |
| 164                           | 26 | 26 | 26 | 33 | 35 | 36 | 44 | 45 | 45 |
| 165                           | 27 | 27 | 27 | 34 | 36 | 37 | 44 | 45 | 46 |



### F.4 Southern receivers

| Southern coastal receivers    |    |    |    |    |    |    |    |    |    |
|-------------------------------|----|----|----|----|----|----|----|----|----|
| Wind speed at hub-height, m/s | 4  | 5  | 6  | 8  | 9  | 10 | 11 | 12 | 13 |
| Noise criteria (All times)    | 47 | 47 | 48 | 49 | 50 | 52 | 53 | 55 | 56 |
| Noise criteria (Night only)   | 42 | 43 | 45 | 46 | 47 | 49 | 50 | 52 | 53 |
| 167                           | 11 | 11 | 11 | 19 | 21 | 21 | 28 | 30 | 30 |
| 168                           | 11 | 11 | 11 | 18 | 20 | 21 | 28 | 29 | 29 |
| 169                           | 11 | 11 | 11 | 19 | 21 | 22 | 28 | 30 | 30 |
| 170                           | 11 | 11 | 11 | 18 | 20 | 21 | 28 | 29 | 29 |
| 171                           | 11 | 11 | 11 | 18 | 20 | 21 | 28 | 29 | 29 |
| 172                           | 11 | 11 | 11 | 18 | 20 | 21 | 28 | 29 | 29 |
| 173                           | 13 | 13 | 13 | 21 | 22 | 23 | 30 | 31 | 31 |
| 174                           | 10 | 10 | 10 | 18 | 20 | 21 | 27 | 29 | 29 |
| 175                           | 10 | 10 | 10 | 18 | 20 | 21 | 27 | 29 | 29 |
| 179                           | 10 | 10 | 10 | 18 | 20 | 20 | 27 | 28 | 29 |
| 183                           | 8  | 8  | 8  | 15 | 17 | 18 | 25 | 26 | 26 |
| 187                           | 13 | 13 | 13 | 20 | 22 | 23 | 30 | 31 | 31 |
| 188                           | 11 | 11 | 11 | 18 | 20 | 21 | 28 | 29 | 30 |
| 190                           | 16 | 16 | 16 | 24 | 26 | 26 | 33 | 35 | 35 |
| 191                           | 16 | 16 | 16 | 24 | 26 | 26 | 34 | 35 | 35 |
| 192                           | 16 | 16 | 16 | 24 | 26 | 26 | 34 | 35 | 35 |
| 193                           | 16 | 16 | 16 | 23 | 25 | 26 | 33 | 34 | 34 |